Foundations of Physics

, Volume 43, Issue 4, pp 424–439 | Cite as

Clifford Algebras in Symplectic Geometry and Quantum Mechanics

  • Ernst Binz
  • Maurice A. de Gosson
  • Basil J. Hiley


The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C0,2. This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional sub-space, \(\mathbb{F}^{a}\) of the Euclidean three-space. This enables us to construct a Poisson Clifford algebra, ℍF, of a finite dimensional phase space which will carry the dynamics. The quantum dynamics appears as a realisation of ℍF in terms of a Clifford algebra consisting of Hermitian operators.


Quantum mechanics Clifford algebra Poisson algebra Symplectic geometry 


  1. 1.
    Benn, I.M., Tucker, R.W.: An Introduction to Spinors and Geometry with Applications in Physics. Hilger/IOP Publishing, Bristol (1987) Google Scholar
  2. 2.
    Binz, E., Pods, S.: The Geometry of Heisenberg Groups with Application in Signal Theory Optics Quantization and Field Quantization. Mathematical Surveys and Monographs, vol. 151. American Mathematical Society, Providence (2009) Google Scholar
  3. 3.
    Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993) Google Scholar
  4. 4.
    de Gosson, M.: Symplectic Geometry–Weyl–Moyal–Calculus, and Quantum Mechanics. Birkhäuser, Basel (2006) Google Scholar
  5. 5.
    Finkelstein, D., Jauch, J.M., Schiminovich, S., Speiser, D.: Foundations of quaternion quantum mechanics. J. Math. Phys. 3, 207 (1962) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Greub, W.: Linear Algebra, 4 edn. Springer, Berlin (1975) MATHCrossRefGoogle Scholar
  7. 7.
    Greub, W.: Multilinear Algebra, 2 edn. Springer, Berlin (1978) MATHCrossRefGoogle Scholar
  8. 8.
    Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1991) Google Scholar
  9. 9.
    Hiley, B.J.: Process, distinction, groupoids and Clifford algebras: an alternative view of the quantum formalism. In: Coecke, B. (ed.) New Structures for Physics, pp. 705–752 (2011) Google Scholar
  10. 10.
    Hiley, B.J., Callaghan, R.E.: The Clifford algebra approach to quantum mechanics A: the Schrödinger and Pauli particles. arXiv:1011.4031 (2010)
  11. 11.
    Hiley, B.J., Callaghan, R.E.: The Clifford algebra approach to quantum mechanics B: the Dirac particle and its relation to the Bohm approach. arXiv:1011.4033 (2010)
  12. 12.
    Hiley, B.J., Callaghan, R.E.: Clifford algebras and the Dirac-Bohm quantum Hamilton-Jacobi equation. Found. Phys. (2011). doi:10.1007/s10701-011-9558-z MATHGoogle Scholar
  13. 13.
    Kauffman, L.H.: Knots and Physics. World Scientific, Singapore (1991) MATHGoogle Scholar
  14. 14.
    Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1994) MATHCrossRefGoogle Scholar
  15. 15.
    Penrose, R.: The Road to Reality: A Complete Guide to the Physical Universe. BCA, Chatham (2004). Johnathan Cape Google Scholar
  16. 16.
    Todorov, I.: Clifford algebras and spinors. arXiv:1106.3197 (math-ph) (2011)
  17. 17.
    Varadarajan, V.S.: Lie Groups, Lie Algebras and Their Representation. Springer, New York (1984) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ernst Binz
    • 1
  • Maurice A. de Gosson
    • 2
  • Basil J. Hiley
    • 3
  1. 1.Fakultät f. Mathematik und Informatik A5/6MannheimGermany
  2. 2.NuHAG, Fakultät für MatematikUniversität WienViennaAustria
  3. 3.TPRU, BirkbeckUniversity of LondonLondonUK

Personalised recommendations