Foundations of Physics

, Volume 42, Issue 5, pp 615–631 | Cite as

Which Fine-Tuning Arguments Are Fine?

  • Alexei Grinbaum


Fine-tuning arguments are a frequent find in the literature on quantum field theory. They are based on naturalness—an aesthetic criterion that was given a precise definition in the debates on the Higgs mechanism. We follow the history of such definitions and of their application at the scale of electroweak symmetry breaking. They give rise to a special interpretation of probability, which we call Gedankenfrequency. Finally, we show that the argument from naturalness has been extended to comparing different models of the physics beyond the Standard Model and that naturalness in this case can at best be understood a socio-historic heuristic.


Naturalness Fine-tuning Higgs mechanism Standard model Falsification Interpretation of probability Bayesianism 


  1. 1.
    Abe, H., Kobayashi, T., Omura, Y.: Relaxed fine-tuning in models with nonuniversal gaugino masses. Phys. Rev. D 76, 015002 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    Allanach, B.C.: Naturalness priors and fits to the constrained minimal supersymmetric standard model. Phys. Lett. B 635, 123–130 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    Anderson, G.W., Castaño, D.J.: Measures of fine tuning. Phys. Lett. B 347, 300–308 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    Anderson, G.W., Castaño, D.J.: Challenging weak-scale supersymmetry at colliders. Phys. Rev. D 53, 2403–2410 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    Anderson, G.W., Castaño, D.J., Riotto, A.: Naturalness lowers the upper bound on the lightest Higgs boson mass in supersymmetry. Phys. Rev. D 55, 2950–2954 (1997) ADSCrossRefGoogle Scholar
  6. 6.
    Arkadi-Hamed, N., Dimopoulos, S., Dvali, G.: The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998). arXiv:hep-ph/9803315 ADSCrossRefGoogle Scholar
  7. 7.
    Athron, P., Miller, D.J.: New measure of fine tuning. Phys. Rev. D 76, 075010 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    Baer, H., Barger, V., Shaughnessy, G., Summy, H., Wang, L.-T.: Precision gluino mass at the LHC in SUSY models with decoupled scalars. arXiv:hep-ph/0703289
  9. 9.
    Barate, R., et al.: Search for the standard model Higgs boson at LEP. Phys. Lett. B 565, 61 (2003). LEP Working Group for Higgs boson searches CrossRefGoogle Scholar
  10. 10.
    Barbieri, R., Giudice, G.F.: Upper bounds on supersymmetric particle masses. Nucl. Phys. B 306, 63–76 (1988) ADSCrossRefGoogle Scholar
  11. 11.
    Barbieri, R., Strumia, A.: About the fine-tuning price of LEP. Phys. Lett. B 433, 63–66 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    Bilaniuk, O.M.P., Sudarshan, E.C.G.: Particles beyond the light barrier. Phys. Today 22, 43–51 (1969). This is the first known reference in press. Attribution to Gell-Mann is however indisputable CrossRefGoogle Scholar
  13. 13.
    Binétruy, P., Kane, G.L., Nelson, B.D., Wang, L.-T., Wang, T.T.: Relating incomplete data and incomplete theory. Phys. Rev. D 70, 095006 (2004). arXiv:hep-ph/0312248 ADSCrossRefGoogle Scholar
  14. 14.
    Cabrera, M.E., Casas, J.A., Ruiz de Austri, R.: Bayesian approach and naturalness in MSSM analyses for the LHC. arXiv:0812.0536
  15. 15.
    Carr, B. (ed.): Universe or Multiverse? Cambridge University Press, Cambridge (2007) Google Scholar
  16. 16.
    Casas, J.A., Espinoza, J.R., Hidalgo, I.: Implications for new physics from fine-tuning arguments. 1. Application to SUSY and seesaw cases. J. High Energy Phys. 11, 057 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    Casas, J.A., Espinoza, J.R., Hidalgo, I.: The MSSM fine tuning problem: a way out. J. High Energy Phys. 01, 008 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    Casas, J.A., Espinoza, J.R., Hidalgo, I.: Implications for new physics from fine-tuning arguments. 2. Little Higgs models. J. High Energy Phys. 03, 038 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    Casas, J.A., Espinoza, J.R., Hidalgo, I.: Expectations for the LHC from naturalness: modified vs. SM Higgs sector. Nucl. Phys. B 777, 226–252 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    Chan, K.L., Chattopadhyay, U., Nath, P.: Naturalness, weak scale supersymmetry, and the prospect for the observation of supersymmetry at the Fermilab Tevatron and at the CERN LHC. Phys. Rev. D 58, 096004 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    Chandrasekhar, S.: Truth and Beauty. Chicago University Press, Chicago (1987) Google Scholar
  22. 22.
    Chankowski, P.H., Ellis, J., Pokorski, S.: The fine-tuning price of LEP. Phys. Lett. B 423, 327–336 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    Cheng, H.C.: Little Higgs, non-standard Higgs, no Higgs and all that. arXiv:0710.3407
  24. 24.
    Ciafaloni, P., Strumia, A.: Naturalness upper bounds on gauge-mediated soft terms. Nucl. Phys. B 494, 41–53 (1997) ADSCrossRefGoogle Scholar
  25. 25.
    Darrow, K.: Contemporary advances in physics, XXVI. Bell Syst. Tech. J. 12, 288–330 (1933). Quoted in [39, p. 267] zbMATHGoogle Scholar
  26. 26.
    de Carlos, B., Casas, J.A.: One-loop analysis of the electroweak breaking in supersymmetric models and the fine-tuning problem. Phys. Lett. B 309, 320–328 (1993) ADSCrossRefGoogle Scholar
  27. 27.
    Dirac, P.: Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. A 133, 60–72 (1931). Quoted in [39, p. 208] ADSCrossRefGoogle Scholar
  28. 28.
    Dirac, P.: The relation between mathematics and physics. Proc. R. Soc. Edinb. 59, 122–129 (1939). Quoted in [39, p. 277] zbMATHGoogle Scholar
  29. 29.
    Donoghue, J.F.: The fine-tuning problems of particle physics and anthropic mechanisms. In: [15], Chap. 15, p. 231 Google Scholar
  30. 30.
    Dyson, F.: Our biotech future. The New York Review of Books 54(12) (19 July 2007) Google Scholar
  31. 31.
    Einstein, A.: Letter to F. Klein, 12 December 1917. Quoted in [43, p. 325] Google Scholar
  32. 32.
    Ellis, J.R., Enquist, K., Nanopoulos, D.V., Zwirner, F.: Observables in low-energy superstring models. Mod. Phys. Lett. A 1, 57–69 (1986) ADSCrossRefGoogle Scholar
  33. 33.
    The Tevatron Electroweak Working Group for the CDF and D0 Collaborations. Combination of CDF and D0 results on the mass of the top quark. arXiv:0803.1683
  34. 34.
    Giudice, G.F.: Naturally speaking: the naturalness criterion and physics and LHC. arXiv:0801.2562
  35. 35.
    Giudice, G.F.: Theories for the Fermi scale. arXiv:0710.3294
  36. 36.
    Giusti, L., Romanino, A., Strumia, A.: Natural ranges of supersymmetric signals. Nucl. Phys. B 550, 3–31 (1999) ADSCrossRefGoogle Scholar
  37. 37.
    LEP Electroweak Working Group:
  38. 38.
    Iliopoulos, J.: Towards a unified theory of elementary particle interactions. In: Einstein Symposium, Berlin 1979. Lecture Notes in Physics, vol. 100, p. 89. Springer, Berlin (1980) CrossRefGoogle Scholar
  39. 39.
    Kragh, H.: Dirac: A Scientific Biography. Cambridge University Press, Cambridge (1990) Google Scholar
  40. 40.
    Lewis, D.: On the Plurality of Worlds. Blackwell, Oxford (1986) Google Scholar
  41. 41.
    McGrew, T., McGrew, L., Vestrup, E.: Probabilities and the fine-tuning argument: a skeptical view. In: Manson, N.A. (ed.) God and Design: The Teleological Argument and Modern Science, p. 200. Routledge, London (2003). Chap. 10 CrossRefGoogle Scholar
  42. 42.
    Nickerson, R.: Cognition and Chance: The Psychology of Probabilistic Reasoning. Routledge, London (2004) Google Scholar
  43. 43.
    Pais, A.: ‘Subtle is the Lord…’: The Science and the Life of Albert Einstein. Oxford University Press, London (1982) Google Scholar
  44. 44.
    Pauli, W.: Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., vol. 2. Springer, Berlin (1985) Google Scholar
  45. 45.
    Peierls, R.: Letter to W. Pauli, 17 July 1933. Quoted in [44, p. 197] Google Scholar
  46. 46.
    Polkinghorne, J.: Faith, Science and Understanding. Yale University Press, New Haven (2000) Google Scholar
  47. 47.
    Quine, W.V.O.: Pursuit of Truth. Harvard University Press, Cambridge (1992). Revised edition Google Scholar
  48. 48.
    Rattazzi, R.: Physics beyond the Standard Model. arXiv:hep-ph/0607058
  49. 49.
    Ross, G.G., Roberts, R.G.: Minimal supersymmetric unification predictions. Nucl. Phys. B 377, 571–592 (1992) ADSCrossRefGoogle Scholar
  50. 50.
    Schuster, P.C., Toro, N.: Persistent fine-tuning in supersymmetry and the NMSSM. arXiv:hep-ph/0512189
  51. 51.
    Susskind, L.: Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory. Phys. Rev. D 20, 2619 (1979) ADSCrossRefGoogle Scholar
  52. 52.
    ’t Hooft, G.: Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. In: ’t Hooft, G., et al. (eds.) Recent Developments in Gauge Theories, Proceedings of 1979 Cargèse Institute, p. 135. Plenum, New York (1980) Google Scholar
  53. 53.
    Weinberg, S.: The First Three Minutes. A. Deutsch, London (1977) Google Scholar
  54. 54.
    Wilson, K.G.: The renormalization group and strong interactions. Phys. Rev. D 3, 1818 (1971) MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    Wilson, K.G.: The origins of lattice gauge theory. Nucl. Phys. Proc. Suppl. 140, 3 (2005) ADSCrossRefGoogle Scholar
  56. 56.
    Witten, E.: Dynamical breaking of supersymmetry. Nucl. Phys. B 185, 513–554 (1981) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.CEA-Saclay/LARSIMGif-sur-YvetteFrance

Personalised recommendations