Foundations of Physics

, Volume 42, Issue 2, pp 256–265 | Cite as

Addressing the Clumsiness Loophole in a Leggett-Garg Test of Macrorealism

  • Mark M. WildeEmail author
  • Ari Mizel


The rise of quantum information theory has lent new relevance to experimental tests for non-classicality, particularly in controversial cases such as adiabatic quantum computing superconducting circuits. The Leggett-Garg inequality is a “Bell inequality in time” designed to indicate whether a single quantum system behaves in a macrorealistic fashion. Unfortunately, a violation of the inequality can only show that the system is either (i) non-macrorealistic or (ii) macrorealistic but subjected to a measurement technique that happens to disturb the system. The “clumsiness” loophole (ii) provides reliable refuge for the stubborn macrorealist, who can invoke it to brand recent experimental and theoretical work on the Leggett-Garg test inconclusive. Here, we present a revised Leggett-Garg protocol that permits one to conclude that a system is either (i) non-macrorealistic or (ii) macrorealistic but with the property that two seemingly non-invasive measurements can somehow collude and strongly disturb the system. By providing an explicit check of the invasiveness of the measurements, the protocol replaces the clumsiness loophole with a significantly smaller “collusion” loophole.


Leggett-Garg inequality Macrorealism Non-invasive measurability Clumsiness loophole 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964) Google Scholar
  2. 2.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987) Google Scholar
  3. 3.
    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49(25), 1804–1807 (1982) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54(9), 857–860 (1985) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Home, D., Sengupta, S.: Bell’s inequality and non-contextual dispersion-free states. Phys. Lett. A 102(4), 159–162 (1984) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Xu, J.-S., Li, C.-F., Zou, X.-B., Guo, G.-C.: Experimentally identifying the transition from quantum to classical with leggett-garg inequalities, July 2009. arXiv:0907.0176
  7. 7.
    Goggin, M.E., Almeida, M.P., Barbieri, M., Lanyon, B.P., O’Brien, J.L., White, A.G., Pryde, G.J.: Violation of the Leggett-Garg inequality with weak measurements of photons (2009). arXiv:0907.1679
  8. 8.
    Palacios-Laloy, A., Mallet, F., Nguyen, F., Bertet, P., Vion, D, Esteve, D, Korotkov, A.N.: Experimental violation of a bell’s inequality in time with weak measurement. Nat. Phys. 6, 442–447 (2010) CrossRefGoogle Scholar
  9. 9.
    Kofler, J., Brukner, C.: Conditions for quantum violation of macroscopic realism. Phys. Rev. Lett. 101(9), 090403 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    Kofler, J., Brukner, C.: Classical world arising out of quantum physics under the restriction of coarse-grained measurements. Phys. Rev. Lett. 99(18), 180403 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    Ruskov, R., Korotkov, A.N., Mizel, A.: Signatures of quantum behavior in single-qubit weak measurements. Phys. Rev. Lett. 96(20), 200404 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    Jordan, A.N., Korotkov, A.N., Büttiker, M.: Leggett-garg inequality with a kicked quantum pump. Phys. Rev. Lett. 97(2), 026805 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    Williams, N.S., Jordan, A.N.: Weak values and the leggett-garg inequality in solid-state qubits. Phys. Rev. Lett. 100(2), 026804 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59(1), 1–85 (1987) ADSCrossRefGoogle Scholar
  16. 16.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  17. 17.
    Abbott, D., Davies, P.C.W., Pati, A.K. (eds.): Quantum Aspects of Life. Imperial College Press, London (2008) Google Scholar
  18. 18.
    Wilde, M.M., McCracken, J.M., Mizel, A.: Could light harvesting complexes exhibit non-classical effects at room temperature? Proc. R. Soc. A 466(2117), 1347–1363 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Computer ScienceMcGill UniversityMontrealCanada
  2. 2.Laboratory for Physical SciencesCollege ParkUSA

Personalised recommendations