Foundations of Physics

, 41:1677

Epistemic Primacy vs. Ontological Elusiveness of Spatial Extension: Is There an Evolutionary Role for the Quantum?

Article

Abstract

A critical re-examination of the history of the concepts of space (including spacetime of general relativity and relativistic quantum field theory) reveals a basic ontological elusiveness of spatial extension, while, at the same time, highlighting the fact that its epistemic primacy seems to be unavoidably imposed on us (as stated by A.Einstein “giving up the extensional continuum … is like to breathe in airless space”). On the other hand, Planck’s discovery of the atomization of action leads to the fundamental recognition of an ontology of non-spatial, abstract entities (Quine) for the quantum level of reality (QT), as distinguished from the necessarily spatio-temporal, experimental revelations (measurements). The elementary quantum act (measured by Planck’s constant) has neither duration nor extension, and any genuinely quantum process literally does not belong in the Raum and time of our experience. As Heisenberg stresses: “Während also die klassische Physik ein objectives Geschehen in Raum and Zeit zum Gegenstand hat, für dessen Existenz seine Beobachtung völlig irrelevant war, behandelt die Quantentheorie Vorgänge, die sozusagen nur in den Momenten der Beobachtung als raumzeitliche Phänomene aufleuchten, und über die in der zwischenzeit anschaulische physikalische Aussagen sinloss sind”. An admittedly speculative, hazardous conjecture is then advanced concerning the relation of such quantum ontology with the role of the pre-phenomenal continuum (Husserl) in the perception of macroscopically distinguishable objects in the Raum and time of our experience. Although rather venturesome, it brings together important philosophical issues. Coherently with recent general results in works on the foundations of QT, it is assumed that the linearity of quantum dynamical evolution does not apply to the central nervous system of living beings at a certain level of the evolutionary ramification and at the pre-conscious stage of subjectivity. Accordingly, corresponding to the onset of a non-linear dynamic evolution, a ‘primary spatial’ reduction is ‘continually’ taking place, thereby constituting the neural precondition for the experience of distinguishable macroscopic objects in the continuous spatial extension. While preventing the theoretically possible quantum superpositions of macroscopic objects from being perceivable by living beings, the ‘primary reduction’ has no effect on the standard processes concerning quantum level entities involved in laboratory man-made experiments. In this connection, an experimental check which might falsify the conjecture is briefly discussed. The approach suggested here, if sound, leads to a naturalization of that part of Kant’s Transcendental Aesthetics than can survive the Euclidean catastrophe. According to such naturalized transcendentalism, “space can well be transcendental without the axioms being so”, in agreement with a well-known statement by Boltzman. Finally, as far as QT is concerned, the conjecture entails that a scheme for quantum measurement of the von Neumann type cannot even ‘leave the ground’, vindicating Bohr’s viewpoint. A quantum theory of measurement, in a proper sense, turns out to be unnecessary and in fact impossible.

Keywords

Spatial extension Perception of macroscopic objects in space Quantum ontology Superposition principle Macro-objectification Violation of linearity of quantum evolution Naturalized transcendentalism 

References

  1. 1.
    Agazzi, E.: Temi e Problemi di Filosofia della Fisica. Abete, Roma (1974) Google Scholar
  2. 2.
    Alexander, H. (ed.): The Leibniz-Clarke correspondence. Fourth paper. Manchester University Press, Manchester (1956) Google Scholar
  3. 3.
    Bassi, A., Ghirardi, G.C.: A general argument against the universal validity of the superposition principle. Phys. Lett. A 275, 373–381 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Bartels, A.: What is spacetime if not a substance? Conclusions from the new Leibnizian argument. In: Mayer, U., Schmidt, H.J. (eds.) Semantical Aspects of Spacetime Theories, pp. 41–51. B.I. Wissenshaftverlag, Mannheim (1994) Google Scholar
  5. 5.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers in Quantum Philosophy, p. 166. Cambridge University Press, Cambridge (1987) Google Scholar
  6. 6.
    Bell, J.S.: Against ‘Measurement. In: Milled, A. (ed.) Sixty-Two Years of Uncertainty, pp. 17–31. Plenum, New York (1990) Google Scholar
  7. 7.
    Bohr, N.: Discussion with Einstein on epistemological problems in atomic physics. In: Schillp, P.A. (ed.) Albert Einstein, Philosopher-Scientist, p. 199. The Library of Living Philosophers, Evanston (1949) Google Scholar
  8. 8.
    DiSalle, R.: On dynamics, indiscernibility, and spacetime ontology. Br. J. Philos. Sci. 45, 265–287 (1994) CrossRefGoogle Scholar
  9. 9.
    Dorato, M., Pauri, M.: Holism and structuralism in classical and quantum general relativity. In: Rickles, D., French, S., Saatsi, J.T. (eds.) The Structural Foundations of Quantum Gravity, pp. 121–151. Clarendon, Oxford (2005) Google Scholar
  10. 10.
    Earman, J.: Was Leibniz a relationist. In: French, P., Wettstein, H. (eds.) Studies in Metaphysics. Midwest Studies in Philosophy, vol. 4. University of Minnesota Press, Minneapolis (1979) Google Scholar
  11. 11.
    Earman, J.: Why space is not a substance (at least not to first degree). Pac. Philos. Q., 67, 225–244 (1986) Google Scholar
  12. 12.
    Earman, J., Norton, J.: What price spacetime substantivalism? The hole story. Br. J. Philos. Sci. 38, 515–525 (1987) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Earman, J.: World Enough and Space-Time. MIT Press, Cambridge (1989) Google Scholar
  14. 14.
    Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 49, 769–822 (1916) CrossRefMATHGoogle Scholar
  15. 15.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777 (1935) ADSMATHCrossRefGoogle Scholar
  16. 16.
    Esfeld, M., Lam, V.: Moderate structural realism about spacetime. Synthèse, 160, 27–46 (2006) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Feigl, H.: The ‘Mental’ and the ‘Physical. In: Feigl, H., Scriven, M., Maxwell, G. (eds.) Minnesota Studies in the Philosophy of Science, vol. 2, pp. 370–497. University of Minnesota Press, Minneapolis (1958) Google Scholar
  18. 18.
    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986) MathSciNetADSCrossRefMATHGoogle Scholar
  19. 19.
    Ghirardi, G.C.: Quantum superpositions and definite perceptions: envisaging new feasible experimental tests. Phys. Lett. A 262(1), 1–4 (1999). Erratum: ibid. 263, 465 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    Ghirardi, G.C.: Does quantum nonlocality irremediably conflict with special relativity? Found. Phys. 40, 1379 (2010) MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Heisenberg, W.: Atomtheorie und Naturerkenntnis. Mitt. Univ. Bundes, Gött. 16(1), 9–20 (1934) Google Scholar
  22. 22.
    Heisenberg, W.: Physics and Philosophy. Dover, New York (1958) Google Scholar
  23. 23.
    Husserl, E.: Ding und Raum: Vorlesungen 1907. Husserliana, vol. 16. Nijhoff, The Hague (1973). Edited by U. Claesges Google Scholar
  24. 24.
    Janiak, A.: Newton: Philosophical Writings: De Gravitatione. Cambridge University Press, Cambridge (2004) Google Scholar
  25. 25.
    Kahl, R.: Selected Writings of Hermann von Helmholtz. Wesleayan Press, Middletown (1971) Google Scholar
  26. 26.
    Kant, I.: Kritik der reinen Vernunft. Johann Friedrich Hartknoch, Riga (1781); 2nd edn. 1787. English translation by N.K. Smith: The Critique of Pure Reason. Macmillan, London (1963) Google Scholar
  27. 27.
    Kant, I.: Opus Postumum, Handschriftlicher Nachlass, vols. VIII, IX. de Gruyter, Berlin (1936–1938). Sez III Google Scholar
  28. 28.
    Leibniz, G.W.: Specimen dynamicum. In: Gerhardt, C.J. (ed.) Leibnizens Mathematische Schriften, vol. VI, p. 235. Halle (1850–1863) Google Scholar
  29. 29.
    Leibniz, G.W.: Philosophical Papers and Letters. Reidel, Dordrecht (1956). Edited by L.E. Loemker Google Scholar
  30. 30.
    Lusanna, L., Pauri, M.: Explaining Leibniz equivalence as difference of non-inertial appearances: dis-solution of the hole argument and physical individuation of point-events. Stud. Hist. Philos. Mod. Phys., 37(4), 692–725 (2006) MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Lusanna, L., Pauri, M.: Dynamical emergence of instantaneous 3-spaces in a class of models of general relativity. In: Petkov, V. (ed.) Relativity and Dimensionality of the World. Springer, Berlin (2007) Google Scholar
  32. 32.
    Malament, D.: Review of Sklar 1976. J. Philos. 73, 306–323 (1976) CrossRefGoogle Scholar
  33. 33.
    Meehl, P.E., Sellars, W.: The concept of emergence. In: Feigl, H., Scriven, M. (eds.) Minnesota Studies in the Philosophy of Science, vol. I, pp. 239–252, University of Minnesota Press, Minneapolis (1956) Google Scholar
  34. 34.
    Nerlich, G.: The Shape of Space. Cambridge University Press, London (1976) Google Scholar
  35. 35.
    Pauri, M., Vallisneri, M.: Ephemeral point-events: is there a last remnant of spatiotemporal objectivity? Festschrift in honor of Roberto Torretti on his 70th Birthday. Dialogos, 79, 263–303 (2002). Special Issue Google Scholar
  36. 36.
    Penrose, R.: The Emperor’s New Mind—Concerning Computers, Minds, and the Laws of Physics. Oxford University Press, New York (1989) Google Scholar
  37. 37.
    Penrose, R.: The Emperor’s new mind—concerning computers, minds, and the laws of physics. In: Behavioural and Brain Sciences, vol. 13, pp. 643–705. Cambridge University Press, Cambridge (1990). With Open Peer Commentary by other authors. ‘The nonalgorithmic mind’, author’s response to criticisms of the Précis, in Behavioural and Brain Sciences, ibid., 692–705 (1990) Google Scholar
  38. 38.
    Penrose, R.: Shadows of the Mind—A Search for the Missing Science of Consciousness. Oxford University Press, Oxford (1994) Google Scholar
  39. 39.
    Peres, A.: Measurement of time by quantum clocks. Am. J. Phys., 48(7), 552 (1980) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Petitot, J.: Continu et objectivité. La bimodalité objective du continu et le platonisme transcendental. In: Salanskis, J.-M., Sinaceur, H. (eds.) Le Labyrinthe du Continu (Colloque de Cerisy). Springer, Berlin (1993) Google Scholar
  41. 41.
    Prosperi, G.M.: Theory of measurement in quantum mechanics and macroscopic description. Int. J. Theor. Phys. 33, 115 (1994) MathSciNetCrossRefGoogle Scholar
  42. 42.
    Riemann, B.: Über die Hypothesen, welche die geometrie zu grunde liegen. In: Weber, H. (ed.) Gesammelte Mathematische Werken. Dover, New York (1953) Google Scholar
  43. 43.
    Salecker, H., Wigner, E.P.: Quantum limitations of the measurement of spacetime distances. Phys. Rev. 109, 571 (1958) MathSciNetADSMATHCrossRefGoogle Scholar
  44. 44.
    Schrödinger, E.: Die gegenwärtige Situation in der Quantemmechanik. Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935). English translation by Trimmer, J.D.: The present situation in Quantum Mechanics. Proc. Am. Phillos. Soc. 124, 3–338 (1980) Google Scholar
  45. 45.
    Shimony, A.: Search for a Naturalistic World View, vol. 1 and vol. 2, pp. 291–309. Cambridge University Press, Cambridge (1993) Google Scholar
  46. 46.
    Shimony, A.: On mentality, quantum mechanics and the actualization of potentialities. In: The Large, the Small and the Human Mind, Reply to Penrose, pp. 144–160. Cambridge University Press, Cambridge (1997) Google Scholar
  47. 47.
    Sklar, L.: Incongruous counterparts, intrinsic features, and the substantiality of space. J. Philos. 71, 187–215 (1976) Google Scholar
  48. 48.
    Stein, H.: Newtonian space-time. Tex. Q. 10, 174–200 (1967) Google Scholar
  49. 49.
    Stein, H.: Newton’s metaphysics. In: Cohen, I.B., Smith, G.E. (eds.) The Cambridge Companion to Newton, pp. 256–307. Cambridge University Press, Cambridge (2002) CrossRefGoogle Scholar
  50. 50.
    Teller, P.: Space-time as a physical quantity. In: Aichinstein, P., Kagon, M.P. (eds.) Kelvin’s Baltimore Lectures and Modern Theoretical Physics. MIT Press, Cambridge (1987) Google Scholar
  51. 51.
    Ursin, R., et al.: Entanglement-based quantum communication over 144 K. Nat. Phys. 3, 481–486 (2007) www.nature.com/naturephysics CrossRefGoogle Scholar
  52. 52.
    Weyl, H.: Groups, Klein’s Erlangen program. Quantities. In: The Classical Groups, Their Invariants and Representations, 2nd edn. pp. 13–23. Princeton University Press, Princeton (1946). Chap. I, §4 Google Scholar
  53. 53.
    Weyl, H.: Das Kontinuum. Kritische Untersuchungen über die Grundlagen der Analysis. de Gruyter, Berlin (1932) Google Scholar
  54. 54.
    Wigner, E.P.: Remarks on the mind-body question. In: Good, I.J. (ed.) The Scientist Speculates. Heinemann, London (1961). Reprinted in J.A. Wheeler, W.H. Zurek (eds) Quantum Theory and Measurement. Princeton University Press, Princeton (1983) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of ParmaParmaItaly

Personalised recommendations