Advertisement

Foundations of Physics

, Volume 42, Issue 6, pp 778–802 | Cite as

Heisenberg’s Uncertainty Relation and Bell Inequalities in High Energy Physics

An effective formalism for unstable two-state systems
  • Antonio Di Domenico
  • Andreas Gabriel
  • Beatrix C. HiesmayrEmail author
  • Florian Hipp
  • Marcus Huber
  • Gerd Krizek
  • Karoline Mühlbacher
  • Sasa Radic
  • Christoph Spengler
  • Lukas Theussl
Article

Abstract

An effective formalism is developed to handle decaying two-state systems. Herewith, observables of such systems can be described by a single operator in the Heisenberg picture. This allows for using the usual framework in quantum information theory and, hence, to enlighten the quantum features of such systems compared to non-decaying systems. We apply it to systems in high energy physics, i.e. to oscillating meson–antimeson systems. In particular, we discuss the entropic Heisenberg uncertainty relation for observables measured at different times at accelerator facilities including the effect of \(\mathcal{CP}\) violation, i.e. the imbalance of matter and antimatter. An operator-form of Bell inequalities for systems in high energy physics is presented, i.e. a Bell-witness operator, which allows for simple analysis of unstable systems.

Keywords

Meson–antimeson systems Bell inequalities Heisenberg’s uncertainty relation Entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amelino-Camelia, G., et al.: Physics with the KLOE-2 experiment at the upgraded DAPHNE. Eur. Phys. J. C 68(3–4), 619 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    Mavromatos, N.E.: Decoherence and CPT violation in a singy model of space-time foam. arXiv:0906.2712 (2009)
  3. 3.
    Mavromatos, N.E., Sarkar, S.: Liouville decoherence in a model of flavour oscillations in the presence of dark energy. Phys. Rev. D 72, 065016 (2005) ADSGoogle Scholar
  4. 4.
    Blasone, M., Capolupo, A., Vitiello, G.: Quantum field theory of three flavor neutrino mixing and oscillations with CP violation. Phys. Rev. D, Part. Fields 66, 025033 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    Blasone, M., Dell’Anno, F., De Siena, S., Di Mauro, M., Illuminati, F.: Multipartite entangled states in particle mixing. Phys. Rev. D 77, 096002 (2008) ADSGoogle Scholar
  6. 6.
    Capolupo, A., Capozziello, S., Vitiello, G.: Dark energy and particle mixing. Phys. Lett. A 373, 601 (2009) ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Bertlmann, R.A., Durstberger, K., Hiesmayr, B.C.: Decoherence of entangled kaons and its connection to entanglement measures. Phys. Rev. A 68, 012111 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    Genovese, M.: On the distances between entangled pseudoscalar mesons states. Eur. Phys. J. C 55, 683 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    Bertlmann, R.A., Grimus, W., Hiesmayr, B.C.: Quantum mechanics, Furry’s hypothesis and a measure of decoherence. Phys. Rev. D 60, 114032 (1999) ADSGoogle Scholar
  10. 10.
    Genovese, M.: About entanglement properties of kaons and tests of hidden variables models. Phys. Rev. A 69, 022103 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    Caban, P., Rembielinski, J., Smolinski, K.A., Walczak, Z., Wlodarczyk, M.: An open quantum system approach to EPR correlations in K0-K0 systems. Phys. Lett. A 357, 6 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    Hiesmayr, B.C., Huber, M.: Bohr’s complementarity relation and the violation of the CP symmetry in high energy physics. Phys. Lett. A 372, 3608 (2008) ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Bramon, A., Escribano, R., Garbarino, G.: Bell’s inequality tests with meson–antimeson pairs. Found. Phys. 26, 563 (2006) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Bramon, A., Escribano, R., Garbarino, G.: Bell’s inequality tests: from photons to B-mesons. J. Mod. Opt. 52, 1681 (2005) ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Courbage, M.M., Durt, T.T., Saberi Fathi, S.M.: A new formalism for the estimation of the CP-violation parameters. arXiv:0907.2514 (2009)
  16. 16.
    Bernabeu, J., Ellis, J., Mavormatos, N.E., Nanopoulos, D.V., Pavassiliou, J.: CPT and quantum mechanics tests with kaons. In: Di Domenico, A. (ed.) Handbook on Neutral Kaon Interferometry at a Phi-factory, pp. 39–83. Laboratori Nazionali Di Frascati, Frascati (2006) Google Scholar
  17. 17.
    Li, J., Qiao, C.F.: New possibilities for testing local realism in high energy physics. Phys. Lett. A 373, 4311 (2009) ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Bramon, A., Garbarino, G., Hiesmayr, B.C.: Quantitative complementarity in two-path interferometry. Phys. Rev. A 69, 022112 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    Yabsley, B.D.: Quantum entanglement at the psi(3770) and upsilon (4S). In: Flavor Physics & CP Violation Conference, Taipei (2008) Google Scholar
  20. 20.
    Bigi, I.I.: Flavour dynamics & CP violation in the standard model: a crucial past—and an essential future. arXiv:hep-ph/0701273 (2007)
  21. 21.
    Di Domenico, A., (KLOE coll.) CPT symmetry and quantum mechanics tests in the neutral koan system at KLOE. Found. Phys. 40, 852 (2010) ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Capolupo, A., Ji, C.-R., Mishchenko, Y., Vitiello, G.: Phenomenology of flavor oscillations with non-perturbative effects from quantum field theory. Phys. Lett. B 594, 135 (2004) ADSGoogle Scholar
  23. 23.
    Beuthe, M.: Oscillations of neutrinos and mesons in quantum field theory. Phys. Rep. 375, 105 (2003) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Bertlmann, R.A., Grimus, W., Hiesmayr, B.C.: An open-quantum-system formulation of particle decay. Phys. Rev. A 73, 054101 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    Lindblad, G.: Commun. Math. Phys. 48, 119 (1976) MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: J. Math. Phys. 17, 821 (1976) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Bertlmann, R.A., Bramon, A., Garbarino, G., Hiesmayr, B.C.: A Bell inequality in high energy physics really experimentally violated? Phys. Lett. A 332, 355 (2004) ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Bertlmann, R.A., Hiesmayr, B.C.: Bell inequalities for entangled kaons and their unitary time evolution. Phys. Rev. A 63, 062112 (2001) ADSCrossRefGoogle Scholar
  29. 29.
    Hiesmayr, B.C.: Nonlocality and entanglement in a strange system. Eur. Phys. J. C 50, 73 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    Mazzola, L., Maniscalco, S., Piilo, J., Suominen, K.A.: Interplay between entanglement and entropy in two-qubit systems. J. Phys. B 43, 085505 (2010) ADSGoogle Scholar
  31. 31.
    Bramon, A., Garbarino, G., Hiesmayr, B.C.: Quantum marking and quantum erasure for neutral kaons. Phys. Rev. Lett. 92, 020405 (2004) ADSCrossRefGoogle Scholar
  32. 32.
    Bramon, A., Garbarino, G., Hiesmayr, B.C.: Active and passive quantum eraser for neutral kaons. Phys. Rev. A 69, 062111 (2004) ADSCrossRefGoogle Scholar
  33. 33.
    Adler, R., et al. (CPLEAR Collaboration): Tests of CPT symmetry and quantum mechanics with experimental data from CPLEAR. Phys. Lett. B 364, 239 (1995) ADSGoogle Scholar
  34. 34.
    Nguyen, H.: CPT results from KTeV. arXiv:hep-ex/0112046 (2001)
  35. 35.
    Ambrosino, F., et al. (KLOE Collaboration): First observation of quantum interference in the process φK S K Lπ + π π + π : a test of quantum mechanics and CPT symmetry. Phys. Lett. B 642, 31 (2006) Google Scholar
  36. 36.
    Abouzaid, E., et al. (KTeV Collaboration): Precise measurements of direct CP violation, CPT symmetry, and other parameters in the neutral kaon system. Phys. Rev. D 83, 092001 (2011) ADSGoogle Scholar
  37. 37.
    Apostolakis, A., et al. (CPLEAR Collaboration): Determination of the T and CPT violation parameters in the neutral kaon system using the Bell-Steinberger relation and data from CPLEAR. Phys. Lett. B 456, 297 (1999) ADSGoogle Scholar
  38. 38.
    Angelopoulos, A., et al. (CPLEAR Collaboration): T-violation and CPT-invariance measurements in the CPLEAR experiment: a detailed description of the analysis of neutral-kaon decays to eπν. Eur. Phys. J. C 22, 55 (2001) ADSCrossRefGoogle Scholar
  39. 39.
    Vaccaro, J.A.: Large scale physical effects of T violation in mesons. arXiv:0911.4528 (2009)
  40. 40.
    Bigi, I.I.: Matter–antimatter oscillations and CP violation as manifested through quantum mysteries. Rep. Prog. Phys. 79, 1869 (2007) ADSCrossRefGoogle Scholar
  41. 41.
    Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983) MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987) MathSciNetADSGoogle Scholar
  43. 43.
    Maassen, H., Uffink, J.B.M.: Generalized entropy uncertainty relation. Phys. Rev. Lett. 60, 1103 (1988) MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929) ADSCrossRefGoogle Scholar
  45. 45.
    Bialynici-Birula, I., Rudnicki, L.: Entropic relation in quantum physics. arXiv:1001.4668 (2010)
  46. 46.
    Berta, M., Christandl, M., Cobeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010) CrossRefGoogle Scholar
  47. 47.
    Nakamura, K., et al. (Particle Data Group): J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  48. 48.
    Gneiting, C., Hornberger, K.: Non-classical correlations from dissociation time entanglement. Appl. Phys. B 95, 237 (2009) ADSCrossRefGoogle Scholar
  49. 49.
    Bertlmann, R.A., Grimus, W., Hiesmayr, B.C.: Bell inequality and CP violation in the neutral kaon system. Phys. Lett. A 289, 21 (2001) ADSzbMATHCrossRefGoogle Scholar
  50. 50.
    Spengler, Ch., Huber, M., Hiesmayr, B.C.: A geometric comparison of entanglement and quantum nonlocality in discrete system. J. Phys. A, Math. Theor. 44, 065304 (2011) MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    Spengler, Ch., Huber, M., Hiesmayr, B.C.: A composite parameterization of unitary groups, density matrices and subspaces. J. Phys. A, Math. Theor. 43, 385306 (2010) MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Hiesmayr, B.C.: A generalized Bell inequality and decoherence for the K0 anti-K0 system. Found. Phys. Lett. 14, 231 (2001) CrossRefGoogle Scholar
  53. 53.
    Isobe, T., Tanimura, S.: A method for systematic construction of Bell-like inequalities and a proposal of a new type of test. Prog. Theor. Phys. 124, 191 (2010) ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Antonio Di Domenico
    • 1
    • 2
  • Andreas Gabriel
    • 3
  • Beatrix C. Hiesmayr
    • 3
    • 4
    Email author
  • Florian Hipp
    • 3
  • Marcus Huber
    • 3
  • Gerd Krizek
    • 3
  • Karoline Mühlbacher
    • 3
  • Sasa Radic
    • 3
  • Christoph Spengler
    • 3
  • Lukas Theussl
    • 4
  1. 1.Università degli Studi di Roma, La SapienzaRomeItaly
  2. 2.INFN Sezione di RomaRomeItaly
  3. 3.Faculty of PhysicsUniversity of ViennaViennaAustria
  4. 4.Research Center for Quantum Information, Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations