Foundations of Physics

, Volume 41, Issue 11, pp 1667–1676 | Cite as

The Problem of Interpretation of Modern Physics

Article

Abstract

Since the advent of Modern Physics in 1905, we observe an increasing activity of “interpreting” the new theories. We mention here the theories of Special Relativity, General Relativity and Quantum Mechanics. However, similar activities for the theories of Classical Physics were not known. We ask for the reasons for the different ways to treat classical physics and modern physics. The answer, that we provide here is very surprising: the different treatments are based on a fundamental misunderstanding of the theories of classical physics.

Keywords

Interpretation Special relativity Quantum mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936) CrossRefGoogle Scholar
  2. 2.
    Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121, 580–590 (1928). Das Quantenpostulat und die neuere Entwicklung der Atomistik. Die Naturwissenschaften 16, 245–257 (1928) ADSMATHCrossRefGoogle Scholar
  3. 3.
    Bohr, N.: On the notion of causality and complementarity. Dialectica 2, 312–319 (1948) MATHCrossRefGoogle Scholar
  4. 4.
    Busch, P., Lahti, P., Mittelstaedt, P.: The Quantum Theory of Measurement. Springer, Heidelberg (1991) Google Scholar
  5. 5.
    Busch, P., Grabowski, M., Lahti, P.: Operational Quantum Physics. Springer, Heidelberg (1995) MATHGoogle Scholar
  6. 6.
    Busch, P., Lahti, P., Mittelstaedt, P.: The Quantum Theory of Measurement, 2nd edn. Springer, Heidelberg (1996) MATHGoogle Scholar
  7. 7.
    Dalla Chiara, M.L., Giuntini, R., Greechie, R.: Reasoning in Quantum Theory. Kluwer, Dordrecht (2004) MATHGoogle Scholar
  8. 8.
    Ehlers, J., Pirani, F.A.E., Schild, A.: The geometry of free fall and light propagation. In: O’Raiffeartaigh, L. (ed.) General Relativity, pp. 63–84. Clarendon, Oxford (1972) Google Scholar
  9. 9.
    Einstein, A.: Über spezielle und allgemeine Relativitätstheorie (Gemeinverständlich). Vieweg Verlag, Braunschweig (1917) Google Scholar
  10. 10.
    Howard, D.: Who invented the ‘Copenhagen Interpretation’? A study in mythology. Philos. Sci. 71, 669–682 (2004) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Joensuu: In: Lahti, P., Mittelstaedt, P. (eds.) Symposium on the Foundations of Modern Physics 1990—Quantum Theory of Measurement and Related Philosophical Problems, Joensuu, Finland, 13–17 August 1990. World Scientific, Singapore (1990) Google Scholar
  12. 12.
    Kant, I.: The Critique of Pure Reason (trans: Guyer, P., Wood, A.). Cambridge University Press, Cambridge (1998), B600 Google Scholar
  13. 13.
    Könneker, K.: Auflösung der Natur- Auflösung der Geschichte. J.B. Metzler, Stuttgart (2001) Google Scholar
  14. 14.
    Mach, E.: Die Mechanik in ihrer Entwicklung, 4th edn. F.A. Brockhaus, Leipzig (1901) (English transl.: The Science of Mechanics (trans: McCormack, T.J.), Chicago, 1902) MATHGoogle Scholar
  15. 15.
    Martzke, R., Wheeler, J.A.: Gravitation as geometry I: the geometry of space-time and the geometrodynamical standard meter. In: Chiu, H.Y., Hoffman, W.F. (eds.) Gravitation and Relativity, pp. 40–64. A. Benjamin, New York (1964) Google Scholar
  16. 16.
    Mittelstaedt, P.: Klassische Mechanik, 2nd edn. Bilbliographisches Institut, Mannheim (1995) Google Scholar
  17. 17.
    Mittelstaedt, P.: The Interpretation of Quantum Mechanics and the Measurement Process. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  18. 18.
    Mittelstaedt, P.: Intuitiveness and truth in modern physics. In: Carson, E., Huber, R. (eds.) Intuition and the Axiomatic Method, pp. 251–266. Springer, Dordrecht (2006) CrossRefGoogle Scholar
  19. 19.
    Mittelstaedt, P.: Operational approach to a logic of quantum physics. In Agazzi, E., Thiel Ch. (eds.) Operations and Constructions in Science, Erlanger Forschungen, Reihe A, Band 111, Erlangen (2006) Google Scholar
  20. 20.
    Poincaré, H.: La mesure du temps. Rev. Métaphys. Morale VI, 1–13 (1898) Google Scholar
  21. 21.
    Reichenbach, H.: Philosophical Foundation of Quantum Mechanics. University of California Press, Berkeley and Los Angeles (1944). Deutsche Übers.: Philosophische Grundlagen der Quantenmechanik, Birkhäuser, Basel (1949) Google Scholar
  22. 22.
    Stachel, J.: Einstein from B to Z. Birkhäuser, Boston (2002) MATHGoogle Scholar
  23. 23.
    von Helmholtz, H.: Über die Tatsachen, die der Geometrie zu Grunde liegen. Nachrichten der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universität. Nr. 9, pp. 193–221 (1868) Google Scholar
  24. 24.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.University of CologneCologneGermany

Personalised recommendations