Advertisement

Foundations of Physics

, Volume 41, Issue 10, pp 1569–1596 | Cite as

T Violation and the Unidirectionality of Time

  • Joan A. VaccaroEmail author
Article

Abstract

An increasing number of experiments at the Belle, BNL, CERN, DAΦNE and SLAC accelerators are confirming the violation of time reversal invariance (T). The violation signifies a fundamental asymmetry between the past and future and calls for a major shift in the way we think about time. Here we show that processes which violate T symmetry induce destructive interference between different paths that the universe can take through time. The interference eliminates all paths except for two that represent continuously forwards and continuously backwards time evolution. Evidence from the accelerator experiments indicates which path the universe is effectively following. This work may provide fresh insight into the long-standing problem of modeling the dynamics of T violation processes. It suggests that T violation has previously unknown, large-scale physical effects and that these effects underlie the origin of the unidirectionality of time. It may have implications for the Wheeler-DeWitt equation of canonical quantum gravity. Finally it provides a view of the quantum nature of time itself.

Keywords

CP violation T violation Kaons Arrow of time Quantum interference Quantum foundations Wheeler-DeWitt equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Price, H.: Time’s Arrow and Archimedes’ Point. Oxford University Press, New York (1996) Google Scholar
  2. 2.
    Aharony, A.: Microscopic irreversibility in the neutral kaon system and the thermodynamical arrow of time I. CPT symmetric case. Ann. Phys. 67, 1–18 (1971) ADSCrossRefGoogle Scholar
  3. 3.
    Aharony, A.: Microscopic irreversibility in the neutral kaon system and the thermodynamical arrow of time II. CPT violating case. Ann. Phys. 68, 163–171 (1971) ADSCrossRefGoogle Scholar
  4. 4.
    Berger, Ch., Sehgal, L.M.: CP violation and arrows of time: evolution of a neutral K or B meson from an incoherent to a coherent state. Phys. Rev. D 76, 036003 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    Christenson, J.H., Cronin, J.W., Fitch, V.L., Turlay, R.: Evidence for the 2π decay of the \(K_{2}^{0} \) meson. Phys. Rev. Lett. 13, 138–140 (1964) ADSCrossRefGoogle Scholar
  6. 6.
    Sakharov, A.D.: Violation of CP symmetry, C asymmetry and baryon asymmetry of the universe. JETP Lett. 5, 24–26 (1967) ADSGoogle Scholar
  7. 7.
    Pavlopoulos, P.: CPLEAR: an experiment to study CP, T and CPT symmetries in the neutral-kaon universe. Nucl. Phys. B 99, 16–23 (2001) CrossRefGoogle Scholar
  8. 8.
    Lusiani, A.: Tests of T and CPT symmetries at the B-factories. J. Phys. Conf. Ser. 171, 012037 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    Angelopoulos, A., et al. (CPLEAR Collaboration): First direct observation of time-reversal non-invariance in the neutral-kaon universe. Phys. Lett. B 444, 43–51 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    Cabibbo, N.: Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963) ADSCrossRefGoogle Scholar
  11. 11.
    Kobayashi, M., Maskawa, T.: CP-violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973) ADSCrossRefGoogle Scholar
  12. 12.
    Wigner, E.P.: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, New York (1959) zbMATHGoogle Scholar
  13. 13.
    The Belle Collaboration: Difference in direct charge-parity violation between charged and neutral B meson decays. Nature 452, 332–335 (2008) CrossRefGoogle Scholar
  14. 14.
    Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Barnett, S.M., Vaccaro, J.A.: The Quantum Phase Operator: A Review. Taylor & Francis, London (2007) zbMATHGoogle Scholar
  16. 16.
    Lee, T.D., Wolfenstein, L.: Analysis of CP-noninvariant interactions and the \(K_{1} ^{0}\), \(K_{2} ^{0}\) system. Phys. Rev. 138, B1490–B1496 (1965) ADSCrossRefGoogle Scholar
  17. 17.
    Rosenband, T., et al.: Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    Bennett, C.L.: Cosmology from start to finish. Nature 440, 1126–1131 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    Kofman, L., Linde, A., Starobinsky, A.A.: Reheating after Inflation. Phys. Rev. Lett. 73, 3195–3198 (1994) ADSCrossRefGoogle Scholar
  20. 20.
    Misner, C.W.: Feynman quantization of general relativity. Rev. Mod. Phys. 29, 497–509 (1957) MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Tolman, R.C.: On the use of the energy-momentum principle in general relativity. Phys. Rev. 35, 875–895 (1930) ADSCrossRefGoogle Scholar
  22. 22.
    Tryon, E.P.: Is the universe a vacuum fluctuation? Nature 246, 396 (1973) ADSCrossRefGoogle Scholar
  23. 23.
    Hartle, J.B., Hawking, S.W.: Wave function of the universe. Phys. Rev. D 28, 2960 (1983) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    DeWitt, B.S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160, 1113 (1967) ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Alvarez, E.: Quantum gravity: an introduction to some recent results. Rev. Mod. Phys. 61, 561 (1989) ADSCrossRefGoogle Scholar
  26. 26.
    Suzuki, M.: On the convergence of exponential operators—the Zassenhaus formula, BCH formula and systematic approximants. Commun. Math. Phys. 57, 193–200 (1977) ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Yao, W.-M., et al.: Review of particle physics. J. Phys. G, Nucl. Part. Phys. 33, 666–684 (2006) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre for Quantum DynamicsGriffith UniversityBrisbaneAustralia

Personalised recommendations