Foundations of Physics

, 41:1521

Testing Super-Deterministic Hidden Variables Theories

Article

Abstract

We propose to experimentally test non-deterministic time evolution in quantum mechanics by consecutive measurements of non-commuting observables on the same prepared state. While in the standard theory the measurement outcomes are uncorrelated, in a super-deterministic hidden variables theory the measurements would be correlated. We estimate that for macroscopic experiments the correlation time is too short to have been noticed yet, but that it may be possible with a suitably designed microscopic experiment to reach a parameter range where one would expect a super-deterministic modification of quantum mechanics to become relevant.

Keywords

Hidden variables Determinism 

References

  1. 1.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964) Google Scholar
  2. 2.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden variable theories. Phys. Rev. Lett. 23, 880–884 (1969) ADSCrossRefGoogle Scholar
  3. 3.
    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Weihs, G., et al.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998). quant-ph/9810080 MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Tittel, W., et al.: Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998). quant-ph/9806043 ADSCrossRefGoogle Scholar
  6. 6.
    Rowe, M.A., et al.: Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791 (2001) CrossRefGoogle Scholar
  7. 7.
    Moehring, D.L., Madsen, M.J., Blinov, B.B., Monroe, C.: Experimental Bell inequality violation with an atom and a photon. Phys. Rev. Lett. 93, 090410 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    Ansmann, M., et al.: Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    Hasegawa, Y., et al.: Violation of a Bell-like inequality in single-neutron interferometry. Nature 425, 45 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    Rosenfeld, W., et al.: Towards a loophole-free test of Bell’s inequality with entangled pairs of neutral atoms. Adv. Sci. Lett. 2, 469 (2009). arXiv:0906.0703 [quant-ph] CrossRefGoogle Scholar
  11. 11.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2004) CrossRefGoogle Scholar
  12. 12.
    Norsen, T.: J.S. Bell’s concept of local causality. arXiv:0701.0401
  13. 13.
    Miao, G.-X., Müller, M., Moodera, J.S.: Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. Phys. Rev. Lett. 102, 076601 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    Barrett, J., Gisin, N.: How much measurement independence is needed in order to demonstrate nonlocality? arXiv:1008.3612 [quant-ph]
  15. 15.
    Wigner, E.P.: On hidden variables and quantum mechanical probabilities. Am. J. Phys. 38, 1005 (1970) ADSCrossRefGoogle Scholar
  16. 16.
    Clauser, J.F.: Von Neumann’s informal hidden-variable argument. Am. J. Phys. 39, 1095 (1971) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.NORDITAStockholmSweden

Personalised recommendations