Foundations of Physics

, Volume 41, Issue 9, pp 1437–1453 | Cite as

A Classical Explanation of Quantization

  • Gerhard Grössing
  • Johannes Mesa Pascasio
  • Herbert Schwabl
Article

Abstract

In the context of our recently developed emergent quantum mechanics, and, in particular, based on an assumed sub-quantum thermodynamics, the necessity of energy quantization as originally postulated by Max Planck is explained by means of purely classical physics. Moreover, under the same premises, also the energy spectrum of the quantum mechanical harmonic oscillator is derived. Essentially, Planck’s constant h is shown to be indicative of a particle’s “zitterbewegung” and thus of a fundamental angular momentum. The latter is identified with quantum mechanical spin, a residue of which is thus present even in the non-relativistic Schrödinger theory.

Keywords

Harmonic oscillator Brownian motion Langevin equation Nonequilibrium thermodynamics Quantum mechanics Spin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grössing, G.: The vacuum fluctuation theorem: exact Schrödinger equation via nonequilibrium thermodynamics. Phys. Lett. A 372(25), 4556–4563 (2008). arXiv:0711.4945v2 MathSciNetADSCrossRefMATHGoogle Scholar
  2. 2.
    Grössing, G.: On the thermodynamic origin of the quantum potential. Physica A 388, 811–823 (2009). arXiv:0808.3539v1 MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150(4), 1079–1085 (1966) ADSCrossRefGoogle Scholar
  4. 4.
    Fritsche, L., Haugk, M.: A new look at the derivation of the Schrödinger equation from Newtonian mechanics. Ann. Phys. (Leipz.) 12(6), 371–403 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Guerra, F., Marra, R.: Stochastic mechanics of spin-1/2 particles. Phys. Rev. D 30(12), 2579–2584 (1984) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    de la Peña, L., Cetto, A.M.: The quantum dice: an introduction to stochastic electrodynamics. In: Fundamental Theories of Physics, vol. 75, Kluwer Academic, Dordrecht (1996) Google Scholar
  7. 7.
    Boyer, T.H.: A brief survey of stochastic electrodynamics. In: Barut, A.O. (ed.) Foundations of Radiation Theory and Quantum Electrodynamics, pp. 45–63. Plenum, New York (1980) Google Scholar
  8. 8.
    Haisch, B., Rueda, A., Puthoff, H.E.: Inertia as a zero-point-field Lorentz force. Phys. Rev. A 49(2), 678–694 (1994) ADSCrossRefGoogle Scholar
  9. 9.
    Grössing, G., Fussy, S., Mesa Pascasio, J., Schwabl, H.: Emergence and collapse of quantum mechanical superposition: orthogonality of reversible dynamics and irreversible diffusion. Physica A 389(21), 4473–4484 (2010). arXiv:1004.4596v1 ADSCrossRefGoogle Scholar
  10. 10.
    Grössing, G.: Sub-quantum thermodynamics as a basis of emergent quantum mechanics. Entropy 12(9), 1975–2044 (2010). http://www.mdpi.com/1099-4300/12/9/1975/ MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Grössing, G., Fussy, S., Mesa Pascasio, J., Schwabl, H.: Elements of sub-quantum thermodynamics: quantum motion as ballistic diffusion. arXiv:1005.1058v2 (2010). To be published; based on a talk at the Fifth International Workshop DICE2010, Castiglioncello, Tuscany, September 13–17, 2010
  12. 12.
    Couder, Y., Protière, S., Fort, E., Boudaoud, A.: Dynamical phenomena: walking and orbiting droplets. Nature 437, 208–208 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    Couder, Y., Fort, E.: Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97(154), 101 (2006) Google Scholar
  14. 14.
    Protière, S., Boudaoud, A., Couder, Y.: Particle-wave association on a fluid interface. J. Fluid Mech. 554, 85–108 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Eddi, A., Fort, E., Moisy, F., Couder, Y.: Unpredictable tunneling of a classical wave-particle association. Phys. Rev. Lett. 102(204), 401 (2009) Google Scholar
  16. 16.
    Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J., Couder, Y.: Path-memory induced quantization of classical orbits. Proc. Natl. Acad. Sci. USA 107(41), 17,515–17,520 (2010) CrossRefGoogle Scholar
  17. 17.
    Coffey, W.T., Kalmykov, Y.P., Waldron, J.T.: The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering. In: World Scientific Series in Contemporary Chemical Physics, vol. 14, 2 edn., World Scientific, Singapore (2004) Google Scholar
  18. 18.
    Verlinde, E.P.: On the origin of gravity and the laws of Newton (2010). arXiv:1001.0785v1
  19. 19.
    Padmanabhan, T.: Thermodynamical aspects of gravity: new insights. Rep. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004v2 ADSCrossRefGoogle Scholar
  20. 20.
    Wallstrom, T.C.: Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. Phys. Rev. A 49, 1613–1617 (1994) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics: Mainly Mechanics, Radiation and Heat, vol. 1. Addison-Wesley, Reading (1966) Google Scholar
  22. 22.
    Esposito, S.: On the role of spin in quantum mechanics. Found. Phys. Lett. 12(2), 165–177 (1999). arXiv:quant-ph/9902019v1 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Fritsche, L., Haugk, M.: Stochastic foundation of quantum mechanics and the origin of particle spin (2009). arXiv:0912.3442v1
  24. 24.
    Salesi, G.: Spin and Madelung fluid. Mod. Phys. Lett. A 11(22), 1815–1823 (1996). arXiv:0906.4147v1 MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    Yang, C.: Modeling quantum harmonic oscillator in complex domain. Chaos Solitons Fractals 30(2), 342–362 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    Recami, E., Salesi, G.: Kinematics and hydrodynamics of spinning particles. Phys. Rev. A 57(1), 98–105 (1998) ADSCrossRefGoogle Scholar
  27. 27.
    Salesi, G., Recami, E.: A velocity field and operator for spinning particles in (nonrelativistic) quantum mechanics. Found. Phys. 28(5), 763–773 (1998) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gerhard Grössing
    • 1
  • Johannes Mesa Pascasio
    • 1
  • Herbert Schwabl
    • 1
  1. 1.Austrian Institute for Nonlinear StudiesViennaAustria

Personalised recommendations