Foundations of Physics

, Volume 41, Issue 8, pp 1375–1397 | Cite as

Spatial Directions, Anisotropy and Special Relativity

  • Marco Mamone CapriaEmail author


The concept of an objective spatial direction in special relativity is investigated and theories assuming light-speed isotropy while accepting the existence of a privileged spatial direction are classified, including so-called very special relativity. A natural generalization of the proper time principle is introduced which makes it possible to devise non-optical experimental tests of spatial isotropy. Several common misunderstandings in the relativistic literature concerning the role of spatial isotropy are clarified.


Relativity Very special relativity Spatial isotropy Differential aging Reciprocity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allais, M.: L’anisotropie de l’Espace. La Nécessaire Révision de Certains Postulats des Théories Contemporaines. Clément Juglar, Paris (1997) Google Scholar
  2. 2.
    Arcidiacono, G.: A new ‘Projective Relativity’ based on the De Sitter universe. Gen. Relativ. Gravit. 7, 885–889 (1976) ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bartocci, U., Mamone Capria, M.: Symmetries and asymmetries in classical and relativistic electrodynamics. Found. Phys. 21, 787–801 (1991) ADSCrossRefGoogle Scholar
  4. 4.
    Berzi, V., Gorini, V.: Reciprocity principle and the Lorentz transformations. J. Math. Phys. 10, 1518–1524 (1969) ADSzbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bogoslovsky, G.Yu.: A special-relativistic theory of the locally anisotropic space-time. I: the metric and group of motions of the anisotropic space of events. Nuovo Cimento Soc. Ital. Fis. B 40, 99–115 (1977) ADSCrossRefGoogle Scholar
  6. 6.
    Bogoslovsky, G.Yu.: A special-relativistic theory of the locally anisotropic space-time. II: mechanics and electrodynamics in the anisotropic space. Nuovo Cimento Soc. Ital. Fis. B 40, 116–134 (1977) ADSCrossRefGoogle Scholar
  7. 7.
    Bogoslovsky, G.Yu.: On the local anisotropy of space-time, inertia and force fields. Nuovo Cimento Soc. Ital. Fis. B 77, 181–190 (1983) ADSCrossRefGoogle Scholar
  8. 8.
    Bogoslovsky, G.Yu.: From the Weyl theory to a theory of locally anisotropic spacetime. Class. Quantum Gravity 9, 569–575 (1992) ADSzbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bogoslovsky, G.Yu.: Lorentz symmetry violation without violation of relativistic symmetry. Phys. Lett. A 350, 5–10 (2006) ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Bogoslovsky, G.Yu., Goenner, H.F.: Concerning the generalized Lorentz symmetry and the generalization of the Dirac equation. Phys. Lett. A 323, 40–47 (2004). arXiv:hep-th/0402172v1, 21 Feb. 2004 ADSzbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups. Springer, Berlin (1985) zbMATHGoogle Scholar
  12. 12.
    Chupp, T.E., Hoare, R.J., Loveman, R.A., Oteiza, E.R., Richardson, J.M., Wagshul, M.E.: Results of a new test of local Lorentz invariance: a search for mass anisotropy in 21Ne. Phys. Rev. Lett. 63, 1541–1545 (1989) ADSCrossRefGoogle Scholar
  13. 13.
    Cohen, A.G., Glashow, S.L.: Very special relativity. Phys. Rev. Lett. 97, 021601 (2006). arXiv:hep-ph/0601236v1, 27 Jan. 2006 ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dingle, H.: Science at the Crossroads. Brian & O’Keeffe, London (1972) Google Scholar
  15. 15.
    Eddington, A.S.: Space Time and Gravitation. Cambridge University Press, Cambridge (1921) zbMATHGoogle Scholar
  16. 16.
    Einstein, A.: Zur Elektrodynamik bewegter Körper. Ann. Phys. 17, 891–921 (1905) CrossRefzbMATHGoogle Scholar
  17. 17.
    Fantappiè, L.: Su una nuova teoria di “relatività finale”. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat. 17, 158–165 (1954) zbMATHGoogle Scholar
  18. 18.
    Gibbons, G.W., Gomis, J., Pope, C.N.: General very special relativity is Finsler geometry. Phys. Rev. D 76, 081701 (2007) ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    Goenner, H.F., Bogoslovsky, G.Yu.: A class of anisotropic (Finsler-)space-time geometries. Gen. Relativ. Gravit. 31, 1383–1394 (1999) ADSzbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lamoreaux, S.K., Jacobs, J.P., Heckel, B.R., Raab, F.J., Fortson, E.N.: New limits on spatial anisotropy from optically pumped 201Hg and 199Hg. Phys. Rev. Lett. 25, 3125–3128 (1986) ADSCrossRefGoogle Scholar
  21. 21.
    Levy-Nahas, M.: Deformation and contraction of Lie algebras. J. Math. Phys. 8, 1211–1222 (1967) ADSzbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lucas, J.R., Hodgson, P.E.: Spacetime and Electromagnetism. Oxford University Press, London (1990) zbMATHGoogle Scholar
  23. 23.
    Mamone Capria, M.: On the conventionality of simultaneity in special relativity. Found. Phys. 31, 775–818 (2001) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Mamone Capria, M., Pambianco, F.: On the Michelson–Morley experiment. Found. Phys. 24, 885–899 (1994) ADSCrossRefGoogle Scholar
  25. 25.
    Moller, C.: The Theory of Relativity, 2nd edn. Oxford University Press, London (1972) Google Scholar
  26. 26.
    Noz, M.E., Kim, Y.S. (eds.): Special Relativity and Quantum Theory. Kluwer Academic, Dordrecht (1988) zbMATHGoogle Scholar
  27. 27.
    Pais, A.: “Subtle is the Lord...”. The Science and the Life of Albert Einstein. Oxford University Press, London (1982) Google Scholar
  28. 28.
    Penrose, R.: The Road to Reality [2004]. Vintage, New York (2007) Google Scholar
  29. 29.
    Poincaré, H.: Sur la dynamique de l’électron. Rend. Circ. Mat. Palermo 21, 129–176 (1906) zbMATHCrossRefGoogle Scholar
  30. 30.
    Wigner, E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Dipartimento di MatematicaPerugiaItaly

Personalised recommendations