Advertisement

Foundations of Physics

, Volume 41, Issue 8, pp 1318–1330 | Cite as

Quantum Interference and Many Worlds: A New Family of Classical Analogies

  • M. J. RaveEmail author
Article

Abstract

We present a new way of constructing classical analogies of quantum interference. These analogies share one common factor: they treat closed loops as fundamental entities. Such analogies can be used to understand the difference between quantum and classical probability; they can also be used to illuminate the many worlds interpretation of quantum mechanics. An examination of these analogies suggests that closed loops (particularly closed loops in time) may have special significance in interpretations of quantum interference, because they allow probabilities to remain classically additive.

Keywords

Berry’s phase Quantum interference Quantum probability Decoherence Closed timelike curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Born, M.: Zur Quantenmechanik der Stoßvorgänge. Z. Phys. 37, 863 (1926) ADSCrossRefGoogle Scholar
  2. 2.
    Knight, P.: Quantum mechanics: where the weirdness comes from. Nature 395, 12 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    de Broglie, L.: Philos. Mag. 47, 446 (1924) Google Scholar
  4. 4.
    Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927) ADSCrossRefGoogle Scholar
  5. 5.
    Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935) ADSCrossRefGoogle Scholar
  6. 6.
    Ficek, Z., Swain, S.: Quantum Interference and Coherence. Springer, New York (2005) Google Scholar
  7. 7.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. III. Addison-Wesley, Reading (1965) zbMATHGoogle Scholar
  8. 8.
    Kirkpatrick, K.A.: “Quantal” behavior in classical probability. Found. Phys. Lett. 16, 199 (2003) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Cohen, O.: Classical teleportation of classical states. Fluct. Noise Lett. 6, C1–C8 (2006) CrossRefGoogle Scholar
  10. 10.
    Dragoman, D., Dragoman, M.: Quantum-Classical Analogies. Springer, Berlin (2004) zbMATHGoogle Scholar
  11. 11.
    Rave, M.J.: Interpreting quantum interference using a Berry’s phase-like quantity. Found. Phys. 38, 1073 (2008) ADSzbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948) ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hartle, J.B.: Quantum mechanics of individual systems. Am. J. Phys. 36, 704 (1968) ADSCrossRefGoogle Scholar
  14. 14.
    Dennett, D.C.: Intuition pumps. In: Brockman, J. (ed.) The Third Culture: Beyond the Scientific Revolution. Simon & Schuster, New York (1995) Google Scholar
  15. 15.
    Wang, L.J., Zou, X.Y., Mandel, L.: Induced coherence without induced emission. Phys. Rev. A 44, 4614 (1991) ADSCrossRefGoogle Scholar
  16. 16.
    Forster, M.R.: Miraculous consilience of quantum mechanics. In: Eells, E., Fetzer, J.H. (eds.) The Place of Probability in Science. Springer, Berlin (2010) Google Scholar
  17. 17.
    Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45 (1984) ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Zeh, H.D.: The Physical Basis of the Direction of Time. Springer, Berlin (2007) zbMATHGoogle Scholar
  19. 19.
    Everett, H. III: In: DeWitt, B.S., Graham, N. (eds.) The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1986) Google Scholar
  20. 20.
    Tegmark, M.: The interpretation of quantum mechanics: many worlds or many words? Fortschr. Phys. 46, 855 (1998) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003) ADSzbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Merli, P.G., Missiroli, G.F., Pozzi, G.: On the statistical aspect of electron interference phenomena. Am. J. Phys. 44, 306 (1976) ADSCrossRefGoogle Scholar
  23. 23.
    Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2004) ADSCrossRefGoogle Scholar
  24. 24.
    Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2007) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemistry and PhysicsWestern Carolina UniversityCullowheeUSA

Personalised recommendations