Foundations of Physics

, Volume 41, Issue 7, pp 1193–1199 | Cite as

Tunneling Confronts Special Relativity

Article

Abstract

Experiments with evanescent modes and tunneling particles have shown that (i) their signal velocity may be faster than light, (ii) they are described by virtual particles, (iii) they are nonlocal and act at a distance, (iv) experimental tunneling data of phonons, photons, and electrons display a universal scattering time at the tunneling barrier front, and (v) the properties of evanescent, i.e. tunneling modes are not compatible with the special theory of relativity.

Keywords

Special relativity Tunneling Faster than light Superluminal signal velocity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nimtz, G.: Found. Phys. 39, 1346–1355 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Nimtz, G.: arXiv:0903.2582v1
  3. 3.
    Hartman, T.: J. Appl. Phys. 33, 3427–3433 (1962) ADSCrossRefGoogle Scholar
  4. 4.
    Feinberg, G.: Phys. Rev. 159, 1089–1105 (1967) ADSCrossRefGoogle Scholar
  5. 5.
    Recami, E.: Riv. Nuovo Cimento 9(6), 1–178 (1986) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Haibel, A., Nimtz, G.: Ann. Phys. (Leipz.) 10, 707–712 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    Esposito, S.: Phys. Rev. E 64, 026609-1–8 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    Olkovsky, V., Recami, E.: Phys. Rep. 214, 339–356 (1992) ADSCrossRefGoogle Scholar
  9. 9.
    Haibel, A., Nimtz, G., Stahlhofen, A.A.: Phys. Rev. E 63, 047601-3 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    Balcou, Ph., Dutriaux, L.: Phys. Rev. Lett. 78, 851–854 (1997) ADSCrossRefGoogle Scholar
  11. 11.
    Mugnai, D., Ranfagni, A., Ronchi, A.: Phys. Lett. A 247, 281–286 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    Steinberg, A., Kwiat, P., Chiao, R.: Phys. Rev. Lett. 71, 708–711 (1993) ADSCrossRefGoogle Scholar
  13. 13.
    Spielmann, C., Szipocs, R., Stingl, A., Krausz, A.: Phys. Rev. Lett. 73, 2308–2311 (1994) ADSCrossRefGoogle Scholar
  14. 14.
    Enders, A., Nimtz, G.: J. Phys. I (Fr.) 2, 1693–1698 (1992) ADSGoogle Scholar
  15. 15.
    Sekatskii, S., Letokhov, V.: Phys. Rev. B 64, 233311-1–4 (2001) ADSCrossRefGoogle Scholar
  16. 16.
    Eckle, P., Pfeiffer, A., Cirelli, C., Staudte, A., Dörner, A., Muller, H., Büttiker, M., Keller, J.: Science 322, 1525–1529 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    Yang, S., Page, J., Liu, Z., Cowan, M., Chan, C., Sheng, P.: Phys. Rev. Lett. 88, 104301-1–4 (2002) ADSGoogle Scholar
  18. 18.
    Robertson, W., Ash, J., McGaugh, M.: Am. J. Phys. 70, 689–693 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    Nimtz, G., Heitmann, W.: Prog. Quantum Electron. 21, 81–108 (1997) ADSCrossRefGoogle Scholar
  20. 20.
    Nimtz, G.: Prog. Quantum Electron. 27, 417–450 (2003) ADSCrossRefGoogle Scholar
  21. 21.
    Nimtz, G.: Lect. Notes Phys. 702, 506–531 (2006) CrossRefGoogle Scholar
  22. 22.
    Boyd, R., Gauthier, D.: Science 326, 1074–1077 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    Low, F., Mende, P.: Ann. Phys. 210, 380–387 (1991) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Longhi, S., Marano, M., Laporta, P., Belmonte, M.: Phys. Rev. E 64, 055602-4 (2001) ADSGoogle Scholar
  25. 25.
    Longhi, S., Laporta, P., Belmonte, M., Recami, E.: Phys. Rev. E 65, 046610-6 (2002) ADSGoogle Scholar
  26. 26.
    Shannon, C.E.: Bell Syst. Tech. J. 27, 379–423 (1948) MathSciNetMATHGoogle Scholar
  27. 27.
    Shannon, C.E.: Bell Syst. Tech. J. 27, 623–656 (1948) MathSciNetGoogle Scholar
  28. 28.
    Sommerfeld, A.: Lectures on Theoretical Physics, Optics. Academic Press, San Diego (1954) Google Scholar
  29. 29.
    Nimtz, G., Haibel, A., Vetter, R.: Phys. Rev. E 66, 037602-4 (2002) ADSCrossRefGoogle Scholar
  30. 30.
    Enders, A., Nimtz, G.: Phys. Rev. E 48, 632–634 (1993) ADSCrossRefGoogle Scholar
  31. 31.
    Olkovsky, V., et al.: J. Phys. I 5, 1351–1365 (1995) CrossRefGoogle Scholar
  32. 32.
    Barbero, A., Hernandes-Figueroa, H., Recami, E.: Phys. Rev. E 62, 8628 (2000) ADSCrossRefGoogle Scholar
  33. 33.
    Papoulis, A.: The Fourier Integral and Its Application. McGraw–Hill, New York (1962) Google Scholar
  34. 34.
    Ali, S.T.: Phys. Rev. D 7, 1668–1675 (1973) ADSCrossRefGoogle Scholar
  35. 35.
    Fillard, J.P.: Near Field Optics and Nanoscopy. World Scientific, Singapore (1997) Google Scholar
  36. 36.
    Merzbacher, E.: Quantum Mechanics, 2nd edn. Wiley, New York (1970) Google Scholar
  37. 37.
    Gasiorowicz, S.: Quantum Physics. Wiley, New York (1996) Google Scholar
  38. 38.
    Stahlhofen, A.A., Nimtz, G.: Europhys. Lett. 76, 189–195 (2006) ADSCrossRefGoogle Scholar
  39. 39.
    Carniglia, C., Mandel, L.: Phys. Rev. D 3, 280–296 (1971) ADSCrossRefGoogle Scholar
  40. 40.
    Nimtz, G., Enders, A., Spieker, H.: J. Phys. I (Fr.) 4, 565–570 (1994) ADSGoogle Scholar
  41. 41.
    Fayngold, M.: Special Relativity and Motions Faster than Light. Wiley–VCH, Weinheim (2002) CrossRefGoogle Scholar
  42. 42.
    Sexl, R.U., Urbandtke, H.K.: Relativity, Groups, Particles. Springer, Wien (2001) MATHCrossRefGoogle Scholar
  43. 43.
    Bowmeester, D., et al.: Nature 390, 575–579 (1996) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.II. Physikalisches InstitutUniverstät zu KölnCologneGermany

Personalised recommendations