Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Unconventional Approach to Orbital-Free Density Functional Theory Derived from a Model of Extended Electrons

Abstract

An equation proposed by Levy, Perdew and Sahni (Phys. Rev. A 30:2745, 1984) is an orbital-free formulation of density functional theory. However, this equation describes a bosonic system. Here, we analyze on a very fundamental level, how this equation could be extended to yield a formulation for a general fermionic distribution of charge and spin. This analysis starts at the level of single electrons and with the question, how spin actually comes into a charge distribution in a non-relativistic model. To this end we present a space-time model of extended electrons, which is formulated in terms of geometric algebra. Wave properties of the electron are referred to mass density oscillations. We provide a comprehensive and non-statistical interpretation of wavefunctions, referring them to mass density components and internal field components. It is shown that these wavefunctions comply with the Schrödinger equation, for the free electron as well as for the electron in electrostatic and vector potentials. Spin-properties of the electron are referred to intrinsic field components and it is established that a measurement of spin in an external field yields exactly two possible results. However, it is also established that the spin of free electrons is isotropic, and that spin-dynamics of single electrons can be described by a modified Landau-Lifshitz equation. The model agrees with the results of standard theory concerning the hydrogen atom. Finally, we analyze many-electron systems and derive a set of coupled equations suitable to characterize the system without any reference to single electron states. The model is expected to have the greatest impact in condensed matter theory, where it allows to describe an N-electron system by a many-electron wavefunction Ψ of four, instead of 3N variables. The many-body aspect of a system is in this case encoded in a bivector potential.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Hohenberg, P., Kohn, W.: Phys. Rev. B 136, 864 (1964)

  2. 2.

    Thomas, L.H.: Proc. Cambr. Philos. Soc 23, 542 (1927)

  3. 3.

    Fermi, E.: Rend. Accad. Naz. Lincei 6, 602 (1927)

  4. 4.

    Fermi, E.: Z. Phys. 48, 73 (1928)

  5. 5.

    Zhou, B., Wang, Y.A.: J. Chem. Phys. 124, 081107 (2006)

  6. 6.

    Wang, Y.A., Govind, N., Carter, E.A.: Phys. Rev. B 60, 16350 (1999)

  7. 7.

    von Weizsäcker, C.F.: Z. Phys. 96, 431 (1935)

  8. 8.

    Perdew, J.P., Constantin, L.A.: Phys. Rev. B 75, 155109 (2007)

  9. 9.

    Kohn, W., Sham, J.S.: Phys. Rev. A 140, 1136 (1965)

  10. 10.

    Levy, M., Perdew, J.P., Sahni, V.: Phys. Rev. A 30, 2745 (1984)

  11. 11.

    March, N.H.: Phys. Lett. A 113, 446 (1986)

  12. 12.

    March, N.H.: J. Comput. Chem. 8, 375 (1987)

  13. 13.

    Holas, A., March, N.H.: Phys. Rev. A 44, 5521 (1991)

  14. 14.

    Misner, C.W., Thorne, K.S., Zurek, W.H.: Phys. Today 62, 40 (2009)

  15. 15.

    Donati, O., Missiroli, G.F., Pozzi, G.: Am. J. Phys. 41, 639 (1973)

  16. 16.

    Gabrielse, G., Hanneke, D., Kinoshita, T., Nio, M., Odom, B.: Phys. Rev. Lett. 97, 030802 (2006)

  17. 17.

    de Broglie, L.: La Reinterpretation de la Mecanique Ondulatoire. Gauthier-Villars, Paris (1971)

  18. 18.

    Valentini, A.: Phys. World 22, 32 (2009)

  19. 19.

    Bohm, D.: Phys. Rev. 85, 166 (1952)

  20. 20.

    Bohm, D.: Phys. Rev. 85, 180 (1952)

  21. 21.

    Hestenes, D.: J. Math. Phys. 14, 893 (1973)

  22. 22.

    Hestenes, D.: Found. Phys. 15, 63 (1985)

  23. 23.

    Hestenes, D.: Found. Phys. 20, 1213 (1990)

  24. 24.

    Eigler, D.: in “Quantum Leaps” on BBC2, May 23, 2002. Quote courtesy of Mike Ross, IBM Almaden

  25. 25.

    Nikolic, H.: Found. Phys. 37, 1563 (2007)

  26. 26.

    Hestenes, D., Sobczyk, G.: Clifford Algebra in Geometric Calculus. Reidel, Dordrecht (1984)

  27. 27.

    Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2002)

  28. 28.

    Hofer, W.A.: Physica A 256, 178 (1998)

  29. 29.

    Keller, J.: Theory of the Electron. Kluwer, Dordrecht (2001)

  30. 30.

    Gull, S., Lasenby, A., Doran, C.: Found. Phys. 23, 1175 (1993)

  31. 31.

    Gull, S., Lasenby, A., Doran, C.: Found. Phys. 23, 1293 (1993)

  32. 32.

    Born, M.: Z. Phys. 37, 863 (1926)

  33. 33.

    Born, M.: Z. Phys. 38, 803 (1926)

  34. 34.

    Born, M.: Gött. Nachr. Math. Phys. Kl. 1, 146 (1926)

  35. 35.

    Davisson, C., Germer, L.H.: Nature 119, 558 (1927)

  36. 36.

    Abraham, M., Becker, R.: Electricity and Magnetism. Blackie, London (1937)

  37. 37.

    Lorentz, H.A.: Theory of Electrons, 2nd edn. (1915). Reprint Dover, New York (1997)

  38. 38.

    Perdew, J., Zunger, A.: Phys. Rev. B 23, 5048 (1981)

  39. 39.

    Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)

  40. 40.

    Delamotte, B.: Am. J. Phys. 72, 170 (2004)

  41. 41.

    Crommie, M.F., Lutz, C.P., Eigler, D.M.: Nature 363, 524 (1993)

  42. 42.

    Gerlach, W., Stern, O.: Z. Phys. 9, 353 (1922)

  43. 43.

    Challinor, A.D., Lasenby, A.N., Gull, S.F., Doran, C.J.L.: Phys. Lett. A 218, 128 (1996)

  44. 44.

    Uhlenbeck, G.E., Goudsmit, S.: Naturwissenschaften 47, 953 (1925)

  45. 45.

    Pauli, W.: Z. Phys. 41, 81 (1927)

  46. 46.

    Landau, L.D., Lifshitz, E.M.: Phys. Z. Sowjetunion 8, 153 (1935)

  47. 47.

    Chambers, R.C.: Phys. Rev. Lett. 5, 3 (1960)

  48. 48.

    Osakabe, N., et al.: Phys. Rev. A 34, 815 (1986)

  49. 49.

    Compton, A.H.: Phys. Rev. 21, 483 (1923)

  50. 50.

    Eddington, A.S.: Relativity Theory of Protons and Electrons. Cambridge University Press, Cambridge (1936)

  51. 51.

    Kilmister, C.W.: Eddington’s Search for a Fundamental Theory: A Key to the Universe. Cambridge University Press, Cambridge (1994)

  52. 52.

    Wang, Y.S., Carter, E.A.: In: Progress in Theoretical Chemistry and Physics, pp. 157–184. Kluwer, Dordrecht (2000)

  53. 53.

    Slater, J.C.: Phys. Rev. 34, 1293 (1929)

  54. 54.

    Kantorovic, L.: Quantum Theory of the Solid State: An Introduction. Kluwer, Dordrecht (2004)

  55. 55.

    Gunnarson, O., Lundqvist, B.: Phys. Rev. B 13, 4274 (1974)

  56. 56.

    Schrödinger, E.: Naturwissenschaften 23, 807 (1935), 823; 844

  57. 57.

    Hofer, W.A., Fisher, A.J.: Phys. Rev. Lett. 91, 036803 (2003)

  58. 58.

    Aspect, A., et al.: Phys. Rev. Lett. 47, 460 (1981)

  59. 59.

    Bell, J.S.: Physics 1, 195 (1964)

  60. 60.

    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

  61. 61.

    Perdew, J.P., Ruzsinszky, A., Constantin, L.A., Sun, J., Csonka, G.I.: J. Chem. Theory Comput. 5, 902 (2009)

  62. 62.

    Blaylock, G.: Am. J. Phys. 78, 11 (2009)

  63. 63.

    Cangi, A., Lee, D., Elliott, P., Burke, K.: (2010). 1002.1351 [cond-mat]

Download references

Author information

Correspondence to Werner A. Hofer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hofer, W.A. Unconventional Approach to Orbital-Free Density Functional Theory Derived from a Model of Extended Electrons. Found Phys 41, 754–791 (2011). https://doi.org/10.1007/s10701-010-9517-0

Download citation

Keywords

  • Electron structure
  • Condensed matter physics
  • Electronic structure calculations
  • Density functional theory
  • Orbital free density functional theory