Advertisement

Foundations of Physics

, Volume 42, Issue 1, pp 19–28 | Cite as

Entanglement Sharing in Real-Vector-Space Quantum Theory

  • William K. Wootters
Article

Abstract

The limitation on the sharing of entanglement is a basic feature of quantum theory. For example, if two qubits are completely entangled with each other, neither of them can be at all entangled with any other object. In this paper we show, at least for a certain standard definition of entanglement, that this feature is lost when one replaces the usual complex vector space of quantum states with a real vector space. Moreover, the difference between the two theories is extreme: in the real-vector-space theory, there exist states of arbitrarily many binary objects, “rebits,” in which every rebit in the system is maximally entangled with each of the other rebits.

Keywords

Entanglement Entanglement monogamy Real-vector-space quantum theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 69–72. Kluwer, Dordrecht (1989) Google Scholar
  2. 2.
    Hill, S., Wootters, W.K.: Phys. Rev. Lett. 78, 5022 (1997) CrossRefADSGoogle Scholar
  3. 3.
    Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998) CrossRefADSGoogle Scholar
  4. 4.
    Coffman, V., Kundu, J., Wootters, W.K.: Phys. Rev. A 61, 052306 (2000) CrossRefADSGoogle Scholar
  5. 5.
    Osborne, T.J., Verstraete, F.: Phys. Rev. Lett. 96, 220503 (2006) CrossRefADSGoogle Scholar
  6. 6.
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Rev. Mod. Phys. 80, 517 (2008) CrossRefMATHADSMathSciNetGoogle Scholar
  7. 7.
    Seevinck, M.: Quantum Inf. Process. 9, 273 (2010) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Zyckowski, K., Bengtsson, I.: arXiv:quant-ph/0606228
  9. 9.
    Plenio, M.B., Virmani, S.: Quantum Inf. Comput. 7, 1 (2007) MATHMathSciNetGoogle Scholar
  10. 10.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009) CrossRefMATHADSMathSciNetGoogle Scholar
  11. 11.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Phys. Rev. A 54, 3824 (1996) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J., Wootters, W.K.: Phys. Rev. Lett. 76, 722 (1996) CrossRefADSGoogle Scholar
  13. 13.
    Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Phys. Rev. A 53, 2046 (1996) CrossRefADSGoogle Scholar
  14. 14.
    Caves, C.M., Fuchs, C.A., Rungta, P.: Found. Phys. Lett. 14, 199 (2001) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Batle, J., Plastino, A.R., Casas, M., Plastino, A.: Phys. Lett. A 298, 301 (2002) CrossRefMATHADSMathSciNetGoogle Scholar
  16. 16.
    Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Phys. Rev. Lett. 86, 5807 (2001) CrossRefADSGoogle Scholar
  17. 17.
    DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: IEEE Trans. Inf. Theory 48, 580 (2002) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Wootters, W.K.: In: Zurek, W.H. (ed.) Complexity, Entropy, and the Physics of Information, pp. 39–46. Addison-Wesley, Reading (1990) Google Scholar
  19. 19.
    Rudolph, T., Grover, L.: arXiv:quant-ph/0210187
  20. 20.
    Fernandez, J.M., Schneeberger, W.: arXiv:quant-ph/0307017
  21. 21.
    McKague, M., Mosca, M., Gisin, N.: Phys. Rev. Lett. 102, 020505 (2009) CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Stueckelberg, E.C.G.: Helv. Phys. Acta 33, 727 (1960) MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PhysicsWilliams CollegeWilliamstownUSA
  2. 2.Department of Applied PhysicsKigali Institute of Science and TechnologyKigaliRwanda

Personalised recommendations