Foundations of Physics

, Volume 41, Issue 2, pp 178–203 | Cite as

Compact Time and Determinism for Bosons: Foundations

Article

Abstract

Free bosonic fields are investigated at a classical level by imposing their characteristic de Broglie periodicities as constraints. In analogy with finite temperature field theory and with extra-dimensional field theories, this compactification naturally leads to a quantized energy spectrum. As a consequence of the relation between periodicity and energy arising from the de Broglie relation, the compactification must be regarded as dynamical and local. The theory, whose foundamental set-up is presented in this paper, turns out to be consistent with special relativity and in particular respects causality. The non trivial classical dynamics of these periodic fields show remarkable overlaps with ordinary quantum field theory. This can be interpreted as a generalization of the AdS/CFT correspondence.

Keywords

Quantization Time Determinism Compact dimensions AdS/CFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein, A.: Principe de relativité. Arch. Sci. Phys. Nat. 29 (1910) Google Scholar
  2. 2.
    Zeh, H.D.: The Physical Basis of the Direction of Time. Springer, Berlin (1992), 188 p. MATHGoogle Scholar
  3. 3.
    Zee, A.: Quantum Field Theory in a Nutshell. Princeton Univ. Press, Princeton (2003), 518 p. MATHGoogle Scholar
  4. 4.
    Zinn-Justin, J.: Quantum field theory at finite temperature: An introduction. hep-ph/0005272
  5. 5.
    Kapusta, J.I.: Finite temperature field theory Google Scholar
  6. 6.
    Penrose, R.: Conformal boundaries, quantum geometry, and cyclic cosmology. Prepared for Beyond Einstein 2008 Conference, Mainz, Germany, 22–26 Sept. 2008 Google Scholar
  7. 7.
    Steinhardt, P.J., Turok, N.: The cyclic universe: An informal introduction. Nucl. Phys. Proc. Suppl. 124, 38–49 (2003). astro-ph/0204479 CrossRefADSGoogle Scholar
  8. 8.
    Nielsen, H.B., Ninomiya, M.: Intrinsic periodicity of time and non-maximal entropy of universe. Int. J. Mod. Phys. A 21, 5151–5162 (2006). hep-th/0601021 MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Nielsen, H.B., Ninomiya, M.: Compactified time and likely entropy: World inside time machine: Closed time-like curve. hep-th/0601048
  10. 10.
    Kong, D.-X., Liu, K.: Time-periodic solutions of the Einstein’s field equations. 0805.1100
  11. 11.
    Henneaux, M.: Boundary terms in the AdS/CFT correspondence for spinor fields. hep-th/9902137
  12. 12.
    Csaki, C., Grojean, C., Murayama, H., Pilo, L., Terning, J.: Gauge theories on an interval: Unitarity without a Higgs. Phys. Rev. D 69, 055006 (2004). hep-ph/0305237 CrossRefADSGoogle Scholar
  13. 13.
    Matsubara, T.: A new approach to quantum statistical mechanics. Prog. Theor. Phys. 14, 351–378 (1955) MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Kaluza, T.: On the problem of unity in physics. Sitz. ber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921, 966–972 (1921) Google Scholar
  15. 15.
    Klein, O.: Quantum theory and five-dimensional theory of relativity. Z. Phys. 37, 895–906 (1926) CrossRefADSGoogle Scholar
  16. 16.
    Dvali, G.R., Gabadadze, G., Kolanovic, M., Nitti, F.: The power of brane-induced gravity. Phys. Rev. D 64, 084004 (2001). hep-ph/0102216 CrossRefADSGoogle Scholar
  17. 17.
    Carena, M., Tait, T.M.P., Wagner, C.E.M.: Branes and orbifolds are opaque. Acta Phys. Pol. B 33, 2355 (2002). hep-ph/0207056 MATHMathSciNetADSGoogle Scholar
  18. 18.
    Karch, A., Katz, E., Son, D.T., Stephanov, M.A.: Linear confinement and AdS/QCD. Phys. Rev. D 74, 015005 (2006). hep-ph/0602229 CrossRefADSGoogle Scholar
  19. 19.
    Broglie, L.d.: Philos. Mag. 47, 446 (1924) Google Scholar
  20. 20.
    Broglie, L.d.: Ann. Phys. 3, 22 (1925) MATHGoogle Scholar
  21. 21.
    Catillon, P., Cue, N., Gaillard, M.J., Genre, R., Gouanère, M., Kirsch, R.G., Poizat, J.-C., Remillieux, J., Roussel, L., Spighel, M.: A search for the de Broglie particle internal clock by means of electron channeling. Found. Phys. 38, 659–664 (2008) CrossRefADSGoogle Scholar
  22. 22.
    ’t Hooft, G.: Determinism in free bosons. Int. J. Theor. Phys. 42, 355–361 (2003). hep-th/0104080 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    ’t Hooft, G.: How does God play dice? (Pre-)determinism at the Planck scale. hep-th/0104219
  24. 24.
    ’t Hooft, G.: Quantum mechanics and determinism. hep-th/0105105
  25. 25.
    Arkani-Hamed, N., Cohen, A.G., Georgi, H.: (De)constructing dimensions. Phys. Rev. Lett. 86, 4757–4761 (2001). hep-th/0104005 CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Berezhiani, Z., Gorsky, A., Kogan, I.I.: On the deconstruction of time. JETP Lett. 75, 530–533 (2002). hep-th/0203016 CrossRefADSGoogle Scholar
  27. 27.
    Elze, H.-T., Schipper, O.: Time without time: A stochastic clock model. Phys. Rev. D 66, 044020 (2002). gr-qc/0205071 CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Elze, H.-T.: Quantum mechanics emerging from timeless classical dynamics. quant-ph/0306096
  29. 29.
    Elze, H.-T.: Quantum mechanics and discrete time from ‘timeless’ classical dynamics. Lect. Notes Phys. 633, 196 (2004). gr-qc/0307014 MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Elze, H.-T.: Emergent discrete time and quantization: Relativistic particle with extradimensions. Phys. Lett. A 310, 110–118 (2003). gr-qc/0301109 MATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Nikolic, H.: Quantum mechanics: Myths and facts. Found. Phys. 37, 1563–1611 (2007). quant-ph/0609163 MATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Dolce, D.: Compact time and determinism for bosons. 0903.3680
  33. 33.
    Ferber, R.: A missing link: What is behind de Broglie’s periodic phenomenon? Found. Phys. Lett. 9(6), 575–586 (1996) CrossRefMathSciNetGoogle Scholar
  34. 34.
    Föhlisch, A., Feuler, P., Hennies, F., Fink, A., Manzel, D., Sanchez-Portal, D., Echenique, P.-M., Wurth, W.: Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005) CrossRefADSGoogle Scholar
  35. 35.
    Weinberg, S.: The Quantum Theory of Fields. Modern applications, vol. 2. Cambridge Univ. Press, Cambridge (1996), 489 p. Google Scholar
  36. 36.
    Feynman, R.P.: The principle of least action in quantum mechanics Google Scholar
  37. 37.
    Rosenstein, B., Horwitz, L.P.: probability current versus charge current of a relativistic particle. J. Phys. A 18, 2115–2121 (1985) CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Nikolic, H.: Is quantum field theory a genuine quantum theory? Foundational insights on particles and strings. Europhys. Lett. 85, 20003 (2009). 0705.3542 CrossRefADSGoogle Scholar
  39. 39.
    Nikolic, H.: Probability in relativistic Bohmian mechanics of particles and strings. Found. Phys. 38, 869–881 (2008). 0804.4564 MATHCrossRefMathSciNetADSGoogle Scholar
  40. 40.
    ’t Hooft, G.: The mathematical basis for deterministic quantum mechanics. J. Phys.: Conf. Ser. 67, 15 (2007). quant-ph/0604008 Google Scholar
  41. 41.
    ’t Hooft, G.: Emergent quantum mechanics and emergent symmetries. AIP Conf. Proc. 957, 154–163 (2007). 0707.4568 CrossRefMathSciNetADSGoogle Scholar
  42. 42.
    Jaffe, R.L.: The Casimir effect and the quantum vacuum. Phys. Rev. D 72, 021301 (2005). hep-th/0503158 CrossRefADSGoogle Scholar
  43. 43.
    Rayleigh, L.: The problem of the Random Walk. Nature 72, 318 (1905) CrossRefADSGoogle Scholar
  44. 44.
    ’t Hooft, G.: Entangled quantum states in a local deterministic theory (2009) Google Scholar
  45. 45.
    ’t Hooft, G.: Quantum gravity without space-time singularities or horizons (2009) Google Scholar
  46. 46.
    Elze, H.-T.: A quantum field theory as emergent description of constrained supersymmetric classical dynamics. Braz. J. Phys. 35(2A+2B), 205–529 (2005). hep-th/0508095 Google Scholar
  47. 47.
    Gozzi, E., Reuter, M., Thacker, W.D.: Symmetries of the classical path integral on a generalized phase space manifold. Phys. Rev. D 46, 757–765 (1992) CrossRefMathSciNetADSGoogle Scholar
  48. 48.
    Gozzi, E., Mauro, D.: Quantization as a dimensional reduction phenomenon. AIP Conf. Proc. 844, 158–176 (2006). quant-ph/0601209 CrossRefMathSciNetADSGoogle Scholar
  49. 49.
    Johnson, S.C., Gutierrez, T.D.: Visualizing the phonon wave function. Am. J. Phys. 70(3), 227–237 (2002) CrossRefADSGoogle Scholar
  50. 50.
    Satz, H.: The thermodynamics of quarks and gluons. 0803.1611
  51. 51.
    Magas, V.K., Anderlik, A., Anderlik, C., Csernai, L.P.: Non-equilibrated post freeze out distributions. Eur. Phys. J. C 30, 255–261 (2003). nucl-th/0307017 CrossRefADSGoogle Scholar
  52. 52.
    Pomarol, A.: Grand unified theories without the desert. Phys. Rev. Lett. 85, 4004–4007 (2000). hep-ph/0005293 CrossRefADSGoogle Scholar
  53. 53.
    Arkani-Hamed, N., Porrati, M., Randall, L.: Holography and phenomenology. J. High Energy Phys. 08, 017 (2001). hep-th/0012148 CrossRefMathSciNetADSGoogle Scholar
  54. 54.
    Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). hep-th/9711200 MATHMathSciNetADSGoogle Scholar
  55. 55.
    Witten, E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505–532 (1998). hep-th/9803131 MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut für Physik (WA THEP)Johannes-Gutenberg UniversitätMainzGermany

Personalised recommendations