Foundations of Physics

, Volume 41, Issue 6, pp 982–1006 | Cite as

The Quasiclassical Realms of This Quantum Universe

Open Access
Article

Abstract

The most striking observable feature of our indeterministic quantum universe is the wide range of time, place, and scale on which the deterministic laws of classical physics hold to an excellent approximation. This essay describes how this domain of classical predictability of every day experience emerges from a quantum theory of the universe’s state and dynamics.

Keywords

Quantum mechanics Quantum cosmology Quasiclassical realm Classical limit Emergence 

References

  1. 1.
    Gell-Mann, M., Hartle, J.B.: Quantum mechanics in the light of quantum cosmology. In: Zurek, W. (ed.) Entropy, and the Physics of Information, SFI Studies in the Sciences of Complexity, vol. VIII. Addison-Wesley, Reading (1990) Google Scholar
  2. 2.
    Gell-Mann, M., Hartle, J.B.: Classical equations for quantum systems. Phys. Rev. D 47, 334 (1993). arXiv:gr-qc/9210010 MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Gell-Mann, M., Hartle, J.B.: Quasiclassical coarse graining and thermodynamic entropy. Phys. Rev. A 76, 022104 (2007). arXiv:quant-ph/0609190 ADSCrossRefGoogle Scholar
  4. 4.
    Zurek, W.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Landsman, N.P.: Between classical and quantum. In: Philosophy of Physics. North-Holland, Amsterdam (2006). arXiv:quant-ph/0506082 Google Scholar
  6. 6.
    Hawking, S.W.: The quantum state of the universe. Nucl. Phys. B 239, 257–276 (1984) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2002) MATHGoogle Scholar
  8. 8.
    Omnès, R.: Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994) MATHGoogle Scholar
  9. 9.
    Gell-Mann, M.: The Quark and the Jaguar. W.H. Freeman, New York (1994) MATHGoogle Scholar
  10. 10.
    Hartle, J.B.: The quantum mechanics of closed systems. In: Hu, B.-L., Ryan, M.P., Vishveshwara, C.V. (eds.) Directions in General Relativity. Volume 1: A Symposium and Collection of Essays in honor of Professor Charles W. Misner’s 60th Birthday. Cambridge University Press, Cambridge (1993). arXiv:gr-qc/9210006 Google Scholar
  11. 11.
    Feynman, R.P., Vernon, J.R.: The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. (N.Y.) 24, 118 (1963) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Caldeira, A., Leggett, A.: Path integral approach to quantum Brownian motion. Physica A 121, 587 (1983) MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Unruh, W., Zurek, W.: Reduction of a wave packet in quantum Brownian motion. Phys. Rev. D 40, 1071 (1989) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Zurek, W.: The reduction of the wave packet: how long does it take. In: Moore, G., Scully, M. (eds.) Frontiers of Non-Equilibrium Quantum Statistical Physics. Plenum Press, New York (1984). arXiv:quant-ph/0302044 Google Scholar
  15. 15.
    Forster, D.: Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions. Addison-Wesley, Redwood City (1975) Google Scholar
  16. 16.
    Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics, ed. by P. Gray, P.J. Shepherd. Consultants Bureau, New York (1974) Google Scholar
  17. 17.
    Halliwell, J.: Decoherent histories and hydrodynamic equations. Phys. Rev. D 58, 1050151-12 (1998) arXiv:quant-ph/9805062 MathSciNetCrossRefGoogle Scholar
  18. 18.
    Halliwell, J.: Decoherent histories and the emergent classicality of local densities. Phys. Rev. Lett. 83, 2481 (1999). arXiv:quant-ph/9905094 MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Landau, L., Lifshitz, E.: Fluid Mechanics. Pergamon, London (1959) Google Scholar
  20. 20.
    Halliwell, J., Hawking, S.W.: Origin of structure in the universe. Phys. Rev. D 31, 1777 (1985) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Hawking, S.W., Laflamme, R., Lyons, G.W.: Origin of time asymmetry. Phys. Rev. D 47, 5342–5356 (1993) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Boltzmann, L.: Zu Hrn. Zermelo’s Abhandlung Über die mechanische Erklärung Irreversibler Vorgange. Ann. Phys. 60, 392–398 (1897) Google Scholar
  23. 23.
    Hartle, J.B.: Spacetime quantum mechanics and the quantum mechanics of spacetime. In: Julia, B., Zinn-Justin, J. (eds.) Gravitation and Quantizations. The Proceedings of the 1992 Les Houches Summer School. Les Houches Summer School Proceedings, vol. LVII. North Holland, Amsterdam (1995). arXiv:gr-qc/9304006. A précis of these lectures is given in Quantum Mechanics at the Planck Scale, talk given at the Workshop on Physics at the Planck Scale, Puri, India, December 1994. arXiv:gr-qc/9508023 Google Scholar
  24. 24.
    Hartle, J.B.: Generalizing quantum mechanics for quantum spacetime. In: Gross, D., Henneaux, M., Sevrin, A. (eds.) The Quantum Structure of Space and Time: Proceedings of the 23rd Solvay Conference on Physics. World Scientific, Singapore (2007). arXiv:gr-qc/0602013 Google Scholar
  25. 25.
    Hartle, J.B., Hertog, T.: Classical behavior of quantum universes (to appear) Google Scholar
  26. 26.
    Hartle, J.B., Hawking, S.W., Hertog, T.: The no-boundary measure of the universe. Phys. Rev. Lett. 100, 202301 (2008). arXiv:0711.4630 MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Hartle, J.B., Hawking, S.W., Hertog, T.: The classical universes of the no-boundary quantum state. arXiv:0803.2663
  28. 28.
    Hartle, J.B.: The quantum mechanics of cosmology. In: Coleman, S., Hartle, J.B., Piran, T., Weinberg, S. (eds.) Quantum Cosmology and Baby Universes: Proceedings of the 1989 Jerusalem Winter School for Theoretical Physics, pp. 65–157. World Scientific, Singapore (1991) Google Scholar
  29. 29.
    London, F., Bauer, E.: La théorie de l’observation en mécanique quantique. Hermann, Paris (1939) Google Scholar
  30. 30.
    Giddings, S.B., Marolf, D., Hartle, J.B.: Observables in effective gravity. Phys. Rev. D 74, 064018 (2006). hep-th/0512200 MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Hartle, J.B., Gell-Mann, M.: Strong decoherence. In: Feng, D.-H., Hu, B.-L. (eds.) Proceedings of the 4th (1994) Drexel Conference on Quantum Non-Integrability: Quantum-Classical Correspondence. International Press of Boston, Hong Kong (1998). arXiv:gr-qc/9509054 Google Scholar
  32. 32.
    Joos, E., Zeh, H.D.: The emergence of classical properties through interaction with the environment. Z. Phys. B 59, 223 (1985) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Santa Fe InstituteSanta FeUSA

Personalised recommendations