Foundations of Physics

, Volume 40, Issue 9–10, pp 1298–1325 | Cite as

Cartan’s Spiral Staircase in Physics and, in Particular, in the Gauge Theory of Dislocations

  • Markus LazarEmail author
  • Friedrich W. Hehl


In 1922, Cartan introduced in differential geometry, besides the Riemannian curvature, the new concept of torsion. He visualized a homogeneous and isotropic distribution of torsion in three dimensions (3d) by the “helical staircase”, which he constructed by starting from a 3d Euclidean space and by defining a new connection via helical motions. We describe this geometric procedure in detail and define the corresponding connection and the torsion. The interdisciplinary nature of this subject is already evident from Cartan’s discussion, since he argued—but never proved—that the helical staircase should correspond to a continuum with constant pressure and constant internal torque. We discuss where in physics the helical staircase is realized: (i) In the continuum mechanics of Cosserat media, (ii) in (fairly speculative) 3d theories of gravity, namely (a) in 3d Einstein-Cartan gravity—this is Cartan’s case of constant pressure and constant intrinsic torque—and (b) in 3d Poincaré gauge theory with the Mielke-Baekler Lagrangian, and, eventually, (iii) in the gauge field theory of dislocations of Lazar et al., as we prove for the first time by arranging a suitable distribution of screw dislocations. Our main emphasis is on the discussion of dislocation field theory.


Cartan’s torsion Differential geometry Dislocations Cosserat continuum Einstein-Cartan theory 3-dimensional theories of gravitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badur, J., Stumpf, H.: On the influence of E. and F. Cosserat on modern continuum mechanics and field theory. University of Bochum, Institute for Mechanics, Communication number 72, (December 1989), 39 pages Google Scholar
  2. 2.
    Baekler, P., Hehl, F.W.: A micro-deSitter spacetime with constant torsion: a new vacuum solution of the Poincaré gauge field theory. In: Lecture Notes in Physics, vol. 176, pp. 1–15. Springer, Berlin (1983) Google Scholar
  3. 3.
    Baekler, P., Mielke, E.W., Hehl, F.W.: Dynamical symmetries in topological 3D gravity with torsion. Nuovo Cimento B 107, 91–110 (1992) CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Bañados, M., Teitelboim, C., Zanelli, J.: The Black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849–1851 (1992). arXiv:hep-th/9204099 zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Capriz, G.: Continua with Microstructure. Springer Tracts Nat. Phil., vol. 35. Springer, Berlin (1989) zbMATHGoogle Scholar
  6. 6.
    Carlip, S.: Quantum Gravity in 2+1 Dimensions. Cambridge Univ. Press, Cambridge (1998) zbMATHCrossRefGoogle Scholar
  7. 7.
    Cartan, É.: Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion. C.R. Acad. Sci. (Paris) 174, 593–595 (1922). English translation by Kerlick, G.D.: On a generalization of the notion of Riemann curvature and spaces with torsion. In: Bergmann, P.G., De Sabbata, V. (eds.) Proc. of the 6th Course of Internat. School on Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity, pp. 489–491, Erice, 1979. Plenum Press, New York (1980); with subsequent comments of Trautman, A.: pp. 493–496 Google Scholar
  8. 8.
    Cartan, É.: On Manifolds with an Affine Connection and the Theory of General Relativity. Bibliopolis, Napoli (1986). (Engl. transl. of French original 1923/24) zbMATHGoogle Scholar
  9. 9.
    Cosserat, E. et F.: Théorie des Corps Déformables. Hermann, Paris (1909). Translated into English by Delphenich, D. (2007) Google Scholar
  10. 10.
    Costa de Beauregard, O.: Translational inertial spin effect. Phys. Rev. 129, 466–471 (1963) zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999) zbMATHGoogle Scholar
  12. 12.
    Eshelby, J.D.: The elastic energy-momentum tensor. J. Elast. 5, 321–335 (1975) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    García, A.A., Hehl, F.W., Heinicke, C., Macías, A.: Exact vacuum solution of a (1+2)-dimensional Poincaré gauge theory: BTZ solution with torsion. Phys. Rev. D 67, 124016 (2003) (7 pages). arXiv:gr-qc/0302097 CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Gronwald, F., Hehl, F.W.: On the gauge aspects of gravity. In: Bergmann, P.G., De Sabbata, V. (eds.) Proc. of the 6th Course of Internat. School on Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity, Erice, 1979, pp. 148–198. Plenum, New York (1980). arXiv:gr-qc/9602013 Google Scholar
  15. 15.
    Gronwald, F., Hehl, F.W.: Stress and hyperstress as fundamental concepts in continuum mechanics and in relativistic field theory. In: Ferrarese, G. (ed.) Advances in Modern Continuum Dynamics, International Conference in Memory of Antonio Signorini, Isola d’Elba, June 1991, pp. 1–32. Pitagora Editrice, Bologna (1993). arXiv:gr-qc/9701054 Google Scholar
  16. 16.
    Günther, W.: Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh. Braunschweig. Wiss. Ges. 10, 195–213 (1958) zbMATHGoogle Scholar
  17. 17.
    Hehl, F.W., Kröner, E.: On the constitutive law of an elastic medium with moment stresses. Z. f. Naturf. 20a, 336–350 (1965) (In German) ADSGoogle Scholar
  18. 18.
    Hehl, F.W., Obukhov, Y.N.: Foundations of Classical Electrodynamics: Charge, Flux, and Metric. Birkhäuser, Boston (2003) zbMATHGoogle Scholar
  19. 19.
    Hehl, F.W., Obukhov, Y.N.: Élie Cartan’s torsion in geometry and in field theory an essay. Ann. Fond. Louis Broglie 32, 157–194 (2007). arXiv:0711.1535 MathSciNetGoogle Scholar
  20. 20.
    Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 48, 393–416 (1976) CrossRefADSGoogle Scholar
  21. 21.
    Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1–171 (1995) CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Heinicke, C.: Exact solutions in Einstein’s theory and beyond. PhD thesis, University of Cologne (2004) Google Scholar
  23. 23.
    Jaunzemis, W.: Continuum Mechanics. MacMillan, New York (1967) zbMATHGoogle Scholar
  24. 24.
    Katanaev, M.O.: Geometric theory of defects. Phys. Usp. 48, 675–701 (2005). Usp. Fiz. Nauk 175, 705–733 (2005). arXiv:cond-mat/0407469 CrossRefADSGoogle Scholar
  25. 25.
    Katanaev, M.O., Volovich, I.V.: Theory of defects in solids and three-dimensional gravity. Ann. Phys. (NY) 216, 1–28 (1992) zbMATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Kleinert, H.: Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation. World Scientific, Hackensack (2008) zbMATHGoogle Scholar
  27. 27.
    Kleman, M.: Forms of matter and forms of radiation (32 pages). arXiv:0905.4643
  28. 28.
    Kleman, M., Friedel, J.: Disclinations dislocations, and continuous defects: a reappraisal. Rev. Mod. Phys. 80, 61–115 (2008) CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Klemm, D., Tagliabue, G.: The CFT dual of AdS gravity with torsion. Class. Quantum Gravity 25, 035011 (2008) (12 pages) CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Kondo, K.: On the geometrical and physical foundations of the theory of yielding. In: Proceedings of the 2nd Japan National Congress for Applied Mechanics, pp. 41–47, Tokyo (1952) Google Scholar
  31. 31.
    Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Ergebnisse der Angew. Mathematik. Springer, Berlin (1958) zbMATHGoogle Scholar
  32. 32.
    Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal. 4, 273–333 (1960) zbMATHCrossRefGoogle Scholar
  33. 33.
    Kröner, E.: The continuized crystal—a bridge between micro—and macromechanics. Z. Angew. Math. Mech. (ZAMM) 66, T284–T294 (1986) Google Scholar
  34. 34.
    Kröner, E.: Continuum theory of defects. In: Balian, R., et al. (ed.) Physics of Defects, Les Houches, Session XXXV, 1980, pp. 215–315. North-Holland, Amsterdam (1981) Google Scholar
  35. 35.
    Lazar, M.: Dislocation theory as a 3-dimensional translation gauge theory. Ann. Phys. (Leipzig) 9, 461–473 (2000). arXiv:cond-mat/0006280 zbMATHCrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Lazar, M.: An elastoplastic theory of dislocations as a physical field theory with torsion. J. Phys. A: Math. Gen. 35, 1983–2004 (2002). arXiv:cond-mat/0105270 zbMATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Lazar, M.: On the Higgs mechanism and stress functions in the translational gauge theory of dislocations. Phys. Lett. A 373, 1578–1582 (2009). arXiv:0903.0990 CrossRefADSGoogle Scholar
  38. 38.
    Lazar, M.: The gauge theory of dislocations: a uniformly moving screw dislocation. Proc. R. Soc. (Lond.) A 465, 2505–2520 (2009). arXiv:0904.4578 zbMATHCrossRefMathSciNetADSGoogle Scholar
  39. 39.
    Lazar, M., Anastassiadis, C.: The gauge theory of dislocations: conservation and balance laws. Philos. Mag. 88, 1673–1699 (2008). arXiv:0806.0999 CrossRefADSGoogle Scholar
  40. 40.
    Lazar, M., Anastassiadis, C.: The gauge theory of dislocations: static solutions of screw and edge dislocations. Philos. Mag. 89, 199–231 (2009). arXiv:0802.0670 CrossRefADSGoogle Scholar
  41. 41.
    Lazar, M., Anastassiadis, C.: Translational conservation and balance laws in the gauge theory of dislocations. In: Steinmann, P. (ed.) IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics. IUTAM Bookseries, vol. 17, pp. 215–227. Springer, Berlin (2009) CrossRefGoogle Scholar
  42. 42.
    Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43, 1157–1184 (2005). arXiv:cond-mat/0502023 CrossRefMathSciNetGoogle Scholar
  43. 43.
    Lazar, M., Maugin, G.A.: On microcontinuum field theories: the Eshelby stress tensor and incompatibility conditions. Philos. Mag. 87, 3853–3870 (2007) CrossRefADSGoogle Scholar
  44. 44.
    Maluf, J.W., Ulhoa, S.C., Faria, F.F.: The Pound-Rebka experiment and torsion in the Schwarzschild spacetime. Phys. Rev. D 80, 044036 (2009) (6 pages) arXiv:0903.2565 CrossRefADSGoogle Scholar
  45. 45.
    Malyshev, C.: The T(3)-gauge model the Einstein-like gauge equation, and Volterra dislocations with modified asymptotics. Ann. Phys. (NY) 286, 249–277 (2000) zbMATHCrossRefMathSciNetADSGoogle Scholar
  46. 46.
    Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman and Hall, London (1993) zbMATHGoogle Scholar
  47. 47.
    Maugin, G.A.: Geometry and thermodynamics of structural rearrangements: Ekkehart Kröner’s legacy. Z. Angew. Math. Mech. (ZAMM) 83, 75–84 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Maugin, G.A.: Pseudo-plasticity and pseudo-inhomogeneity effects in material mechanics. J. Elast. 71, 81–103 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Mielke, E.W., Baekler, P.: Topological gauge model of gravity with torsion. Phys. Lett. A 156, 399–403 (1991) CrossRefMathSciNetADSGoogle Scholar
  50. 50.
    Mielke, E.W., Rincón Maggiolo, A.A.: Rotating black hole solution in a generalized topological 3D gravity with torsion. Phys. Rev. D 68, 104026 (2003) (7 pages) CrossRefMathSciNetADSGoogle Scholar
  51. 51.
    Mielke, E.W., Rincon Maggiolo, A.A.: S-duality in 3D gravity with torsion. Ann. Phys. (NY) 322, 341–362 (2007) zbMATHCrossRefMathSciNetADSGoogle Scholar
  52. 52.
    Neff, P.: Cosserat Theory. Article on his homepage
  53. 53.
    Nester, J.M.: Normal frames for general connections. Ann. Phys. (Berlin) 19, 45–52 (2010) zbMATHCrossRefMathSciNetADSGoogle Scholar
  54. 54.
    Puntigam, R.A., Soleng, H.H.: Volterra distortions spinning strings, and cosmic defects. Class. Quantum Gravity 14, 1129–1149 (1997). arXiv:gr-qc/9604057 zbMATHCrossRefADSGoogle Scholar
  55. 55.
    Ruggiero, M.L., Tartaglia, A.: Einstein-Cartan theory as a theory of defects in space-time. Am. J. Phys. 71, 1303–1313 (2003) CrossRefMathSciNetADSGoogle Scholar
  56. 56.
    Schaefer, H.: Das Cosserat Kontinuum. Z. Angew. Math. Mech. (ZAMM) 47, 485–498 (1967) zbMATHCrossRefGoogle Scholar
  57. 57.
    Schaefer, H.: Die Motorfelder des dreidimensionalen Cosserat-Kontinuums im Kalkül der Differentialformen, Int. Centre for Mechanical Sciences (CISM), Udine, Italy, Courses and Lectures, Sobrero, L., (ed.) No. 19 (60 pages) (1970) Google Scholar
  58. 58.
    Schücking, E.L.: Gravitation is torsion (7 pages). arXiv:0803.4128
  59. 59.
    Schücking, E.L.: Einstein’s apple and relativity’s gravitational field (36 pages) arXiv:0903.3768v2
  60. 60.
    Schücking, E.L., Surowitz, E.J.: Einstein’s apple: his first principle of equivalence (30 pages). arXiv:gr-qc/0703149
  61. 61.
    Shie, K.F., Nester, J.M., Yo, H.J.: Torsion cosmology and the accelerating universe. Phys. Rev. D 78, 023522 (2008) (16 pages). arXiv:0805.3834 CrossRefADSGoogle Scholar
  62. 62.
    Trautman, A.: Einstein-Cartan theory. In: Francoise, J.-P., et al. (eds.) Encyclopedia of Math. Physics, pp. 189–195. Elsevier, Oxford (2006). arXiv:gr-qc/0606062 CrossRefGoogle Scholar
  63. 63.
    Voigt, W.: Theoretische Studien über die Elastizitätsverhältnisse der Krystalle. Abh. Königl. Ges. Wiss. Göttingen (math. Kl.) 34, 3–52 (1887) Google Scholar
  64. 64.
    Zeghadi, A., Forest, S., Gourgues, A.-F., Bouaziz, O.: Cosserat continuum modelling of grain size effects in metal polycrystals. Proc. Appl. Math. Mech. 5, 79–82 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Emmy Noether Research Group, Department of PhysicsDarmstadt University of TechnologyDarmstadtGermany
  2. 2.Department of PhysicsMichigan Technological UniversityHoughtonUSA
  3. 3.Institute for Theoretical PhysicsUniversity of CologneCologneGermany
  4. 4.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA

Personalised recommendations