Foundations of Physics

, Volume 40, Issue 8, pp 1081–1087 | Cite as

Probability in Theories With Complex Dynamics and Hardy’s Fifth Axiom



L. Hardy has formulated an axiomatization program of quantum mechanics and generalized probability theories that has been quite influential. In this paper, properties of typical Hamiltonian dynamical systems are used to argue that there are applications of probability in physical theories of systems with dynamical complexity that require continuous spaces of pure states. Hardy’s axiomatization program does not deal with such theories. In particular Hardy’s fifth axiom does not differentiate between such applications of classical probability and quantum probability.


Probability Complex dynamics Axiomatization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dakić, B., Brukner, Č.: Quantum theory and beyond: is entanglement special? arXiv:0911.0695v1 [quant-ph]
  2. 2.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936) CrossRefGoogle Scholar
  3. 3.
    Mackey, G.W.: The Mathematical Foundations of Quantum Mechanics. Benjamin, New York (1963) MATHGoogle Scholar
  4. 4.
    Piron, C.: Axiomatique quantique. Helv. Phys. Acta 37, 439–468 (1964) MATHMathSciNetGoogle Scholar
  5. 5.
    Ludwig, G.: Foundations of Quantum Mechanics. Springer, New York (1983) MATHGoogle Scholar
  6. 6.
    Hardy, L.: Quantum mechanics from five reasonable axioms. arXiv:quant-ph/0101012
  7. 7.
    Hardy, L.: Why quantum theory? In: Butterfield, J., Placek, T. (eds.): Proceedings of the NATO Advanced Research Workshop on Modality, Probability and Bell’ s Theorem, pp. 61–73. IOS, Amsterdam (2002) Google Scholar
  8. 8.
    Hardy, L.: Probability theories in general and quantum theory in particular. Sud. Hist. Phylos. Mod. Phys. 34, 381–391 (2001) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Schack, R.: Quantum theory from four of Hardy’s axioms. arXiv:quant-ph/0210017v1
  10. 10.
    Duck, I.: Discovering quantum mechanics one again. arXiv:quant-ph/0307121v1
  11. 11.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978) MATHGoogle Scholar
  12. 12.
    Abraham, R., Marsden, J.E.: Foundations of Mechanics. Benjamin/Cummings, New York (1980) Google Scholar
  13. 13.
    Arnol, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. Benjamin, New York (1968) MATHGoogle Scholar
  14. 14.
    Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics and Chaos. CRC, New York (1999) MATHGoogle Scholar
  15. 15.
    MacKay, R.S., Meiss, J.D. (eds.): Hamiltonian Dynamical Systems. Hilger, Bristol (1987) MATHGoogle Scholar
  16. 16.
    Burić, N., Percival, I.C.: Modular smoothing and KAM tori. Physica D 71, 39–54 (1994) MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Landsman, N.P.: Mathematical Topics Between Classical and Quantum Mechanics. Springer, New York (1998) Google Scholar
  18. 18.
    Ford, J., Mantica, G.: Does quantum mechanics obeys correspondence principle? Is it complete? Am. J. Phys. 60, 1086–1098 (1992) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Buric, N.: Hamiltonian quantum dynamics with separability constraints. Ann. Phys. (NY) 233, 17–33 (2008) CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations