Foundations of Physics

, Volume 40, Issue 6, pp 629–637 | Cite as

The Non-unique Universe



The purpose of this paper is to elucidate, by means of concepts and theorems drawn from mathematical logic, the conditions under which the existence of a multiverse is a logical necessity in mathematical physics, and the implications of Gödel’s incompleteness theorem for theories of everything.

Three conclusions are obtained in the final section: (i) the theory of the structure of our universe might be an undecidable theory, and this constitutes a potential epistemological limit for mathematical physics, but because such a theory must be complete, there is no ontological barrier to the existence of a final theory of everything; (ii) in terms of mathematical logic, there are two different types of multiverse: classes of non-isomorphic but elementarily equivalent models, and classes of model which are both non-isomorphic and elementarily inequivalent; (iii) for a hypothetical theory of everything to have only one possible model, and to thereby negate the possible existence of a multiverse, that theory must be such that it admits only a finite model.


Multiverses Godel’s incompleteness theorem Theories of everything Mathematical structures Mathematical logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Derdzinski, A.: Geometry of the Standard Model of Elementary Particles. Texts and Monographs in Physics. Springer, Berlin (1992) MATHGoogle Scholar
  2. 2.
    Earman, J.: Laws, Symmetry, and Symmetry Breaking; Invariance, Conservation Principles, and Objectivity, Presidential address PSA (2002) Google Scholar
  3. 3.
    Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press, London (2001) MATHGoogle Scholar
  4. 4.
    Geroch, R., Hartle, J.B.: Computability and physical theories. Found. Phys. 16(6), 533–550 (1986) CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Hartmann, S.: Effective field theories, reductionism and scientific explanation. Stud. Hist. Philos. Mod. Phys. 32, 267–304 (2001) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Linde, A.D.: Chaotic inflating universe. Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 38, 149–151 (1983a) [English translation: J. Exp. Theor. Phys. Lett. 38, 176–179] ADSGoogle Scholar
  7. 7.
    Linde, A.D.: Chaotic inflation. Phys. Lett. B 129, 177–181 (1983b) CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    McCabe, G.: The structure and interpretation of the standard model. In: Philosophy and Foundations of Physics, vol. 2. Elsevier, Amsterdam (2007) Google Scholar
  9. 9.
    Mosterin, J.: Anthropic explanations in cosmology. In: Hajek, Valdés, Westerstahl (eds.) Proceedings of the 12th International Congress of Logic, Methodology and Philosophy of Science. North-Holland, Amsterdam (2004) Google Scholar
  10. 10.
    Smolin, L.: The case for background independence (2005). arXiv:hep-th/0507235v1
  11. 11.
    Smolin, L.: The status of cosmological natural selection (2006). arXiv:hep-th/0612185
  12. 12.
    Smolin, L.: The unique universe. Phys. World June, 21–25 (2009) Google Scholar
  13. 13.
    Tegmark, M.: Is ‘the theory of everything’ merely the ultimate ensemble theory? Ann. Phys. 270, 1–51 (1998). arXiv:gr-qc/9704009 MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Tegmark, M.: The mathematical universe. Found. Phys. 38, 101–50 (2008). arXiv:0704.0646v2 MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Wallace, D.: Worlds in the Everett interpretation. Stud. Hist. Philos. Mod. Phys. 33, 637–661 (2001) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.TadleyUK

Personalised recommendations