Advertisement

Foundations of Physics

, Volume 40, Issue 6, pp 585–606 | Cite as

Quantum Covers in Quantum Measure Theory

  • Sumati Surya
  • Petros Wallden
Article

Abstract

Sorkin’s recent proposal for a realist interpretation of quantum theory, the anhomomorphic logic or coevent approach, is based on the idea of a “quantum measure” on the space of histories. This is a generalisation of the classical measure to one which admits pair-wise interference and satisfies a modified version of the Kolmogorov probability sum rule. In standard measure theory the measure on the base set Ω is normalised to one, which encodes the statement that “Ω happens”. Moreover, the Kolmogorov sum rule implies that the measure of any subset A is strictly positive if and only if A cannot be covered by a countable collection of subsets of zero measure. In quantum measure theory on the other hand, simple examples suffice to demonstrate that this is no longer true. We propose an appropriate generalisation, the quantum cover, which in addition to being a cover of A, satisfies the property that if the quantum measure of A is non-zero then this is also the case for at least one of the elements in the cover. Our work implies a non-triviality result for the coevent interpretation for Ω of finite cardinality, and allows us to cast the Peres-Kochen-Specker theorem in terms of quantum covers.

Keywords

Quantum interpretation Quantum measure theory Quantum topology Lattice theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gell-Mann, M., Hartle, J.B.: Phys. Rev. D 47, 3345 (1993) CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Sorkin, R.D.: Mod. Phys. Lett. A 9, 3119 (1994) zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Sorkin, R.D.: In: Feng, D.H., Hu, B.-L. (eds.) Quantum Classical Correspondence: Proceedings of the 4th Drexel Symposium on Quantum Nonintegrability, Philadelphia, 8–11 September 1994, pp. 229–251. International Press, Cambridge (1997). arXiv:gr-qc/9507057 Google Scholar
  4. 4.
    Sorkin, R.D.: J. Phys. A 40, 3207 (2007) zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Sorkin, R.D.: J. Phys. Conf. Ser. 67, 012018 (2007) CrossRefADSGoogle Scholar
  6. 6.
    Martin, X., O’Connor, D., Sorkin, R.D.: Phys. Rev. D 71, 024029 (2005) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Kochen, S., Specker, E.: J. Math. Mech. 17, 59–83 (1967) zbMATHMathSciNetGoogle Scholar
  8. 8.
    Peres, A.: J. Phys. A, Math. Gen. 24, L175–L178 (1991) CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Dowker, F., Ghazi-Tabatabai, Y.: J. Phys. A 41, 105301 (2008) CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Engle, K.: Sperner Theory. Cambridge University Press, Cambridge (1996) Google Scholar
  11. 11.
    Salgado, R.B.: Mod. Phys. Lett. A 17, 711 (2002) zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Sinha, U., Couteau, C., Medendorp, Z., Söllner, I., Laflamme, R., Sorkin, R., Weihs, G.: arXiv:0811.2068v1 [quant-ph]
  13. 13.
    Ghazi-Tabatabai, Y., Wallden, P.: J. Phys. A, Math. Theor. 42, 235303 (2009) CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Raman Research InstituteBangaloreIndia

Personalised recommendations