Foundations of Physics

, Volume 40, Issue 9–10, pp 1368–1378 | Cite as

Time in Quantum Physics: From an External Parameter to an Intrinsic Observable

Article

Abstract

In the Schrödinger equation, time plays a special role as an external parameter. We show that in an enlarged system where the time variable denotes an additional degree of freedom, solutions of the Schrödinger equation give rise to weights on the enlarged algebra of observables. States in the associated GNS representation correspond to states on the original algebra composed with a completely positive unit preserving map. Application of this map to the functions of the time operator on the large system delivers the positive operator valued maps which were previously proposed by two of us as time observables. As an example we discuss the application of this formalism to the Wheeler-DeWitt theory of a scalar field on a Robertson-Walker spacetime.

Quantum theory Time operator Constraint Partial observables Conditional probabilities in quantum physics Wheeler-De Witt equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187 (1995) MATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Grosse, H., Wulkenhaar, R.: Renormalisation of φ 4-theory on noncommutative R 4 to all orders. arXiv:hep-th/0403232v1 (2004)
  3. 3.
    Rovelli, C.: Partial observables. Phys. Rev. D 65, 124013 (2002) MathSciNetADSGoogle Scholar
  4. 4.
    Dittrich, B.: Partial and complete observables for canonical general relativity. Class. Quantum Gravity 23, 6155 (2006) MATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Thiemann, T.: Reduced phase space quantization and Dirac observables. Class. Quantum Gravity 23, 1163 (2006) MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: an analytical and numerical investigation. Phys. Rev. D 73, 124038 (2006) MathSciNetADSGoogle Scholar
  7. 7.
    Brunetti, R., Fredenhagen, K.: Time of occurrence observable in quantum mechanics. Phys. Rev. A 66, 044101 (2002) CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Buchholz, D., Porrmann, M., Stein, U.: Dirac versus Wigner. Towards a universal particle concept in local quantum field theory. Phys. Lett. B 267, 377 (1991) MathSciNetADSGoogle Scholar
  9. 9.
    Porrmann, M.: Particle weights and their disintegration. I. Commun. Math. Phys. 248, 269 (2004) MATHMathSciNetADSGoogle Scholar
  10. 10.
    Porrmann, M.: Particle weights and their disintegration. II. Phys. Lett. B 248, 305 (2004) MATHMathSciNetGoogle Scholar
  11. 11.
    Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics 1: C*- and W*-algebras. Symmetry groups. Decomposition of states. In: Texts and Monographs in Physics, 2nd edn. Springer, Berlin (2002) Google Scholar
  12. 12.
    Gambini, R., Porto, R.A., Pullin, J., Torterolo, S.: Conditional probabilities with Dirac observables and the problem of time in quantum gravity. Phys. Rev. D 79, 041501(R) (2009) MathSciNetADSGoogle Scholar
  13. 13.
    Aharonov, Y., Bohm, D.: Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122, 1649 (1961) MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Busch, P.: The time-energy uncertainty relation. In: Muga, J.G., Sala Mayato, R., Egusquiza, I.L. (eds.) Time in Quantum Mechanics, pp. 69–98, 2nd rev. edn. Springer, Berlin (2002). 2007, and related papers therein CrossRefGoogle Scholar
  15. 15.
    Ashtekar, A., Kaminski, W., Lewandowski, J.: Quantum field theory on a cosmological, quantum space-time. arXiv:0901.0933 [gr-qc] (2009)

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di TrentoPovoItaly
  2. 2.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany

Personalised recommendations