Foundations of Physics

, Volume 40, Issue 3, pp 276–288

On the Possibility of Supertasks in General Relativity



Malament-Hogarth spacetimes are the sort of models within general relativity that seem to allow for the possibility of supertasks. There are various ways in which these spacetimes might be considered physically problematic. Here, we examine these criticisms and investigate the prospect of escaping them.

Supertasks Malament-Hogarth spacetimes General relativity Computation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chakrabarti, S., Geroch, R., Liang, C.: Timelike curves of limited acceleration in general relativity. J. Math. Phys. 24, 597–598 (1983) MATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Earman, J.: Bangs, Crunches, Whimpers, and Shrieks. Oxford University Press, Oxford (1995) Google Scholar
  3. 3.
    Earman, J., Norton, J.: Forever is a day: supertasks in Pitowsky and Malament-Hogarth spacetimes. Philos. Sci. 60, 22–42 (1993) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Earman, J., Norton, J.: Infinite pains: the trouble with supertasks. In: Stich, S., Morton, A. (eds.) Benacerraf and His Critics, pp. 231–261. Blackwell, New York (1996) Google Scholar
  5. 5.
    Geroch, R.: Domain of dependence. J. Math. Phys. 11, 437–449 (1970) MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Geroch, R.: Spacetime structure from a global viewpoint. In: Sachs, B.K. (ed.) General Relativity and Cosmology, pp. 71–103. Academic Press, New York (1971) Google Scholar
  7. 7.
    Geroch, R.: Prediction in general relativity. In: Earman, J., Glymour, C., Stachel, J. (eds.) Foundations of Space-Time Theories. Minnesota Studies in the Philosophy of Science, vol. 8, pp. 81–93. University of Minnesota Press, Minneapolis (1977) Google Scholar
  8. 8.
    Geroch, R., Horowitz, G.: Global structure of spacetimes. In: Hawking, S., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey, pp. 212–293. Cambridge University Press, Cambridge (1979) Google Scholar
  9. 9.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973) MATHGoogle Scholar
  10. 10.
    Hogarth, M.: Does general relativity allow an observer to view an eternity in a finite time? Found. Phys. Lett. 5, 173–181 (1992) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hogarth, M.: Non-Turing computers and non-Turing computability. In: Hull, D., Forbes, M., Burian, R. (eds.) Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994, pp. 126–138. University of Chicago Press, Chicago (1994) Google Scholar
  12. 12.
    Krasnikov, S.: Even the Minkowski space is holed. Phys. Rev. D 79, 124041 (2009) CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Manchak, J.: Is prediction possible in general relativity? Found. Phys. 38, 317–321 (2008) MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Manchak, J.: Is spacetime hole-free? Gen. Relativ. Gravit. 41, 1639–1643 (2009) MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Pitowski, I.: The physical Church thesis and physical computational complexity. Iyyun 39, 81–99 (1990) Google Scholar
  16. 16.
    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of WashingtonSeattleUSA

Personalised recommendations