Foundations of Physics

, Volume 39, Issue 10, pp 1177–1190 | Cite as

The Stern–Gerlach Phenomenon According to Classical Electrodynamics

Article

Abstract

We present a description of the Stern–Gerlach type experiments using only the concepts of classical electrodynamics and the Newton’s equations of motion. The quantization of the projections of the spin (or the projections of the magnetic dipole) is not introduced in our calculations. The main characteristic of our approach is a quantitative analysis of the motion of the magnetic atoms at the entrance of the magnetic field region. This study reveals a mechanism which modifies continuously the orientation of the magnetic dipole of the atom in a very short time interval, at the entrance of the magnetic field region. The mechanism is based on the conservation of the total energy associated with a magnetic dipole which moves in a non uniform magnetic field generated by an electromagnet. A detailed quantitative comparison with the (1922) Stern–Gerlach experiment and the didactical (1967) experiment by J.R. Zacharias is presented. We conclude, contrary to the original Stern–Gerlach statement, that the classical explanations are not ruled out by the experimental data.

Keywords

Foundations of quantum mechanics Spin quantization Stern–Gerlach experiment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dechoum, K., França, H.M., Malta, C.P.: Classical aspects of Pauli–Schrödinger equation. Phys. Lett. A 93, 248 (1998) Google Scholar
  2. 2.
    Rabi, I.I., Ramsey, N.F., Schwinger, J.: Use of rotating coordinates in magnetic resonance problems. Rev. Mod. Phys. 26, 167 (1954) MATHCrossRefADSGoogle Scholar
  3. 3.
    Bohm, D, Schiller, R., Tiomno, J.: A causal interpretation of the Pauli equation. Nuovo Cimento Suppl. 1, 48 (1955) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Schiller, R.: Quasi-classical theory of the spinning electron. Phys. Rev. 125, 1116 (1962) MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Dewdney, C., Holland, P.R., Kyprianidis, A., Vigier, J.P.: Spin and non-locality in quantum mechanics. Nature 336, 536 (1988) CrossRefADSGoogle Scholar
  6. 6.
    Dewdney, C., Holland, P.R., Kyprianidis, A.: What happens in a spin measurement? Phys. Lett. A 119, 259 (1986) CrossRefADSGoogle Scholar
  7. 7.
    Holland, P.R.: The Quantum Theory of Motion. Cambridge Univ., Cambridge (1993), chapter 9 Google Scholar
  8. 8.
    Boyer, T.H.: Classical spinning magnetic dipole in classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. A 29, 2389 (1984) CrossRefADSGoogle Scholar
  9. 9.
    Barranco, A.V., Brunini, S.A., França, H.M.: Spin and paramagnetism in classical stochastic electrodynamics. Phys. Rev. A 39, 5492 (1989) CrossRefADSGoogle Scholar
  10. 10.
    de la Peña, L., Cetto, A.M.: In: van der Merwe, A. (ed.) The Quantum Dice. An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996) Google Scholar
  11. 11.
    Marshall, T.W.: Random electrodynamics. Proc. R. Soc. Ser. A 276, 475 (1963) MATHCrossRefADSGoogle Scholar
  12. 12.
    França, H.M., Santos, R.B.B.: Anomalous paramagnetic behaviour: the role of zero-point electromagnetic fluctuations. Phys. Lett. A 238, 227 (1998) MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    França, H.M., Santos, R.B.B.: Resonant paramagnetic enhancement of the thermal and zero-point Nyquist noise. Phys. Lett. A 251, 100 (1999) CrossRefADSGoogle Scholar
  14. 14.
    Stern, O.: Z. Phys. 7, 249 (1921). See the English translation: A way towards the experimental examination of spatial quantisation in a magnetic field, Z. Phys. D 10, 114 (1988) CrossRefADSGoogle Scholar
  15. 15.
    Gerlach, W., Stern, O.: Der experimentelle Nachweis des magnetischen Moments des Silberatoms. Z. Phys. 8, 110 (1921) ADSGoogle Scholar
  16. 16.
    Gerlach, W., Stern, O.: Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Z. Phys. 9, 349 (1922) CrossRefADSGoogle Scholar
  17. 17.
    Taylor, J.B.: Magnetic moments of the alkali metal atoms. Phys. Rev. 28, 576 (1926). See in particular the comments concerning the width of the slits on page 580 CrossRefADSGoogle Scholar
  18. 18.
    Rabi, I.I.: Refraction of beams of molecules. Nature 123, 163 (1929) MATHCrossRefADSGoogle Scholar
  19. 19.
    Fraser, R.G.J.: Molecular Rays. Cambridge Univ. Press, London (1931). See pages 117 and 150 Google Scholar
  20. 20.
    Rabi, I.I.: Zur methode der ablenkung von molekularstrahlen. Z. Phys. 54, 190 (1929). See the Fig. 5 on page 196 CrossRefADSGoogle Scholar
  21. 21.
    Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975). Section 5.7 MATHGoogle Scholar
  22. 22.
    Smith, K.F.: Molecular Beams. Methuen & Co Ltd., London (1955). Chapters 2 and 4 MATHGoogle Scholar
  23. 23.
    French, A.P., Taylor, E.F.: An Introduction to Quantum Physics. Norton, New York (1978). Chapter 10 Google Scholar
  24. 24.
    Estermann, I., Simpson, O.C., Stern, O.: The magnetic moment of the proton. Phys. Rev. 52, 535 (1937) CrossRefADSGoogle Scholar
  25. 25.
    Rañada, A.F., Rañada, M.F.: The Stern–Gerlach quantum-like behaviour of a classical charged particle. J. Phys. A 12, 1419 (1979) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de São Paulo C.P. 66318São PauloBrazil

Personalised recommendations