Foundations of Physics

, Volume 40, Issue 4, pp 418–429

Misleading Signposts Along the de Broglie-Bohm Road to Quantum Mechanics

Article

Abstract

Eighty years after de Broglie’s, and a little more than half a century after Bohm’s seminal papers, the de Broglie–Bohm theory (a.k.a. Bohmian mechanics), which is presumably the simplest theory which explains the orthodox quantum mechanics formalism, has reached an exemplary state of conceptual clarity and mathematical integrity. No other theory of quantum mechanics comes even close. Yet anyone curious enough to walk this road to quantum mechanics is soon being confused by many misleading signposts that have been put up, and not just by its detractors, but unfortunately enough also by some of its proponents. This paper outlines a road map to help navigate ones way.

Keywords

Quantum mechanics de Broglie-Bohm theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987) Google Scholar
  2. 2.
    Goldstein, S.: Bohmian mechanics and quantum information. Found. Phys. This issue Google Scholar
  3. 3.
    Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843–907 (1992) MATHCrossRefADSGoogle Scholar
  4. 4.
    Feynman, R.P.: The Character of Physical Law. MIT Press, Cambridge (1965) Google Scholar
  5. 5.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. Part I. Phys. Rev. 85, 166–179 (1952) CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. Part II. Phys. Rev. 85, 180–193 (1952) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Phys. 40, 322–326 (1926) ADSGoogle Scholar
  8. 8.
    Ferris, T.: The Whole Shebang: A State-of-the-Universe(s) Report. Touchstone, New York (1997) Google Scholar
  9. 9.
    de Broglie, L.V.: La nouvelle dynamique des quanta. In: Bordet, J. (ed.) Cinquième Conseil de Physique Solvay (Bruxelles 1927). Gauthier-Villars, Paris (1928). English transl.: The new dynamics of quanta. In: Bacciagaluppi, G., Valentini, A. (eds.) Quantum Theory at the Crossroads, pp. 374–406. Cambridge Univ. Press, forthcoming Google Scholar
  10. 10.
    de Broglie, L.V.: La structure de la matière et du rayonnement et la mécanique ondulatoire. Comptes Rendus 184, 273–274 (1927) MATHGoogle Scholar
  11. 11.
    de Broglie, L.V.: La mécanique ondulatoire et la structure atomique de la matière et du rayonnement. J. Phys. Rad. 8, 225–241 (1927) CrossRefGoogle Scholar
  12. 12.
    de Broglie, L.V.: Une Tentative d’Interprétation Causale et non Linéaire de la Mécanique Ondulatoire: la Théorie de la Double Solution. Gauthier-Villars, Paris (1956) Google Scholar
  13. 13.
    Messiah, A.: Mécanique Quantique, Tome 1. Dunod, Paris (1969) Google Scholar
  14. 14.
    Hiley, B.J.: On the relationship between the Wigner-Moyal and Bohm approaches to quantum mechanics: A step to a more general theory? Found. Phys. This issue Google Scholar
  15. 15.
    Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–59 (1932) MATHCrossRefADSGoogle Scholar
  16. 16.
    Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99–123 (1949) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Born, M.: Zur Quantenmechanik der Stossvorgänge. Z. Phys. 37, 863–867 (1926) CrossRefADSGoogle Scholar
  18. 18.
    Born, M.: Quantenmechanik der Stossvorgänge. Z. Phys. 38, 803–827 (1926) CrossRefADSGoogle Scholar
  19. 19.
    Wigner, E.P.: Interpretations of quantum mechanics. Lectures given in the physics dept. of Princeton University during 1976; revised for publication 1981; In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 260–314. Princeton Univ. Press, Princeton, 1983. (The relevant passages are on p. 262 and 290) Google Scholar
  20. 20.
    Bohm, D.: Reply to a criticism of a causal re-interpretation of the quantum theory. Phys. Rev. 87, 389–390 (1952) MATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Bohm, D.: Comments on an Article of Takabayashi concerning the formulation of quantum mechanics with classical pictures. Prog. Theor. Phys. 9, 273–287 (1953) MATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Bohm, D., Schiller, R., Tiomno, J.: A causal interpretation of the Pauli equation (A). Nuovo Cimento Suppl. 1, 48–66 (1955) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Bohm, D., Bub, J.: A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory. Rev. Mod. Phys. 38, 453–469 (1966) MATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Bohm, D., Hiley, B.J.: The Undivided Universe. Routlege, London (1993) Google Scholar
  25. 25.
    Kiessling, M.K.-H.: Electromagnetic field theory without divergence problems. 1. The Born legacy. J. Stat. Phys. 116, 1057–1122 (2004) MATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Kiessling, M.K.-H.: Ditto. 2. A least invasively quantized theory. J. Stat. Phys. 116, 1123–1159 (2004) MATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Born, M., Infeld, L.: Foundation of the new field theory. Nature 132, 1004 (1933) MATHCrossRefADSGoogle Scholar
  28. 28.
    Born, M., Infeld, L.: Ditto. Proc. R. Soc. Lond. A 144, 425–451 (1934) MATHCrossRefADSGoogle Scholar
  29. 29.
    Berndl, K., Dürr, D., Goldstein, S., Zanghì, N.: Nonlocality, Lorentz invariance, and Bohmian quantum theory. Phys. Rev. A 53, 2062–2073 (1996) CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Dürr, D., Goldstein, S., Münch-Berndl, K.: Zanghì, N.: Hypersurface Bohm-Dirac models. Phys. Rev. A 60, 2729–2736 (1999) CrossRefADSGoogle Scholar
  31. 31.
    Tumulka, R.: The “Unromantic Pictures” of quantum theory. J. Phys. A 40, 3245–3273 (2007) MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© The Authors 2009

Authors and Affiliations

  1. 1.Department of MathematicsRutgers, The State University of New JerseyPiscatawayUSA

Personalised recommendations