Advertisement

Foundations of Physics

, Volume 39, Issue 8, pp 964–995 | Cite as

Schrödinger’s Equation with Gauge Coupling Derived from a Continuity Equation

  • U. KleinEmail author
Article

Abstract

A quantization procedure without Hamiltonian is reported which starts from a statistical ensemble of particles of mass m and an associated continuity equation. The basic variables of this theory are a probability density ρ, and a scalar field S which defines a probability current j=ρ S/m. A first equation for ρ and S is given by the continuity equation. We further assume that this system may be described by a linear differential equation for a complex-valued state variable χ. Using these assumptions and the simplest possible Ansatz χ(ρ,S), for the relation between χ and ρ,S, Schrödinger’s equation for a particle of mass m in a mechanical potential V(q,t) is deduced. For simplicity the calculations are performed for a single spatial dimension (variable q). Using a second Ansatz χ(ρ,S,q,t), which allows for an explicit q,t-dependence of χ, one obtains a generalized Schrödinger equation with an unusual external influence described by a time-dependent Planck constant. All other modifications of Schrödinger’ equation obtained within this Ansatz may be eliminated by means of a gauge transformation. Thus, this second Ansatz may be considered as a generalized gauging procedure. Finally, making a third Ansatz, which allows for a non-unique external q,t-dependence of χ, one obtains Schrödinger’s equation with electrodynamic potentials A,φ in the familiar gauge coupling form. This derivation shows a deep connection between non-uniqueness, quantum mechanics and the form of the gauge coupling. A possible source of the non-uniqueness is pointed out.

Keywords

Quantum theory Gauge theory Continuity equation Time-dependent Planck constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caticha, A.: Consistency, amplitudes and probabilities in quantum theory. Phys. Rev. A 57(3), 1572–1582 (1998) CrossRefADSGoogle Scholar
  2. 2.
    Chicone, C., Kopeikin, S., Mashhoon, B., Retzloff, D.G.: Delay equations and radiation damping. Phys. Lett. A 285, 17–26 (2001) ADSGoogle Scholar
  3. 3.
    Cook, D.B.: Probability and Schrödinger’s Mechanics. World Scientific, Singapore (2002) zbMATHGoogle Scholar
  4. 4.
    de Castro, A.S., de Souza Dutra, A.: On the quantum Hamilton-Jacobi formalism. Found. Phys. 21(6), 649–663 (1991) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    de la Pena, L., Cetto, A.M.: Quantum theory and linear stochastic electrodynamics. Found. Phys. 31(12), 1703–1731 (2001) CrossRefMathSciNetGoogle Scholar
  6. 6.
    De Luca, J.: Geometric integration of the electromagnetic two-body problem. J. Math. Phys. 48, 012702 (2007) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Dirac, P.A.M.: Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. Ser. A 133, 60–72 (1931) zbMATHCrossRefADSGoogle Scholar
  8. 8.
    Elizalde, E.: A note on the quantum Hamilton-Jacobi formalism. Found. Phys. Lett. 6, 283–288 (1993) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hall, M.J., Reginatto, M.: Schrödinger equation from an exact uncertainty principle. J. Phys. A 35, 3289–3303 (2002) zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Home, D., Whitaker, M.A.B.: Ensemble interpretations of quantum mechanics. A modern perspective. Phys. Rep. 210(4), 223–317 (1992) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Kaempfer, F.A.: Concepts in Quantum Mechanics. Academic Press, New York (1965) Google Scholar
  12. 12.
    Landau, L.D., Lifshitz, E.M.: Classical Theory of Fields, 5 edn. Course of Theoretical Physics, vol. II. Pergamon, Oxford (1967). Translation from Russian, Nauka, Moscow (1973) Google Scholar
  13. 13.
    London, F.: Quantenmechanische Deutung der Theorie von Weyl. Z. Phys. 42, 375 (1927) CrossRefADSGoogle Scholar
  14. 14.
    Mackey, G.W.: The Mathematical Foundations of Quantum Mechanics. Benjamin, Reading (1963) zbMATHGoogle Scholar
  15. 15.
    Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985), p. 65 zbMATHGoogle Scholar
  16. 16.
    Ogievetski, V.I., Polubarinov, I.V.: On the meaning of gauge invariance. Nuovo Cimento 23, 173–180 (1962) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Raju, C.K.: The electrodynamic 2-body problem and the origin of quantum mechanics. Found. Phys. 34, 937–962 (2004) zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Reginatto, M.: Derivation of equations of nonrelativistic quantum mechanics using the principle of minimum fisher information. Phys. Rev. A 58, 1775–1778 (1998) CrossRefADSGoogle Scholar
  19. 19.
    Rohrlich, F.: Classical Charged Particles. Addison-Wesley, Reading (1965) zbMATHGoogle Scholar
  20. 20.
    Schiller, R.: Quasi-classical theory of the nonspinning electron. Phys. Rev. 125(3), 1100–1108 (1962) zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Schrödinger, E.: Quantisierung als Eigenwertproblem, Erste Mitteilung. Ann. Phys. 79, 361 (1926) CrossRefGoogle Scholar
  22. 22.
    Smith, M.L., Oeztas, A.M., Paul, J.: A model of light from ancient blue emissions. Int. J. Theor. Phys. 45, 937–952 (2006) zbMATHCrossRefGoogle Scholar
  23. 23.
    Spohn, H.: The critical manifold of the Lorentz-Dirac equation. Europhys. Lett. 50, 287–292 (2000) CrossRefADSGoogle Scholar
  24. 24.
    Utiyama, R.: Invariant theoretical interpretation of interactions. Phys. Rev. 101, 1597–1607 (1956) zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Weyl, H.: Elektron und Gravitation I. Z. Phys. 56, 330–352 (1929) CrossRefADSGoogle Scholar
  26. 26.
    Yang, C.N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96(1), 191–195 (1954) CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikJohannes Kepler Universität LinzLinzAustria

Personalised recommendations