Foundations of Physics

, Volume 39, Issue 7, pp 731–759 | Cite as

Intuitionistic Quantum Logic of an n-level System

  • Martijn Caspers
  • Chris Heunen
  • Nicolaas P. Landsman
  • Bas Spitters
Open Access


A decade ago, Isham and Butterfield proposed a topos-theoretic approach to quantum mechanics, which meanwhile has been extended by Döring and Isham so as to provide a new mathematical foundation for all of physics. Last year, three of the present authors redeveloped and refined these ideas by combining the C*-algebraic approach to quantum theory with the so-called internal language of topos theory (Heunen et al. in arXiv:0709.4364). The goal of the present paper is to illustrate our abstract setup through the concrete example of the C*-algebra M n (ℂ) of complex n×n matrices. This leads to an explicit expression for the pointfree quantum phase space Σ n and the associated logical structure and Gelfand transform of an n-level system. We also determine the pertinent non-probabilisitic state-proposition pairing (or valuation) and give a very natural topos-theoretic reformulation of the Kochen–Specker Theorem.

In our approach, the nondistributive lattice ℘(M n (ℂ)) of projections in M n (ℂ) (which forms the basis of the traditional quantum logic of Birkhoff and von Neumann) is replaced by a specific distributive lattice \(\mathcal{O}(\Sigma_{n})\) of functions from the poset \(\mathcal{C}(M_{n}(\mathbb{C}))\) of all unital commutative C*-subalgebras C of M n (ℂ) to ℘(M n (ℂ)). The lattice \(\mathcal{O}(\Sigma_{n})\) is essentially the (pointfree) topology of the quantum phase space Σ n , and as such defines a Heyting algebra. Each element of \(\mathcal{O}(\Sigma_{n})\) corresponds to a “Bohrified” proposition, in the sense that to each classical context \(C\in\mathcal{C}(M_{n}(\mathbb{C}))\) it associates a yes-no question (i.e. an element of the Boolean lattice ℘(C) of projections in C), rather than being a single projection as in standard quantum logic. Distributivity is recovered at the expense of the law of the excluded middle (Tertium Non Datur), whose demise is in our opinion to be welcomed, not just in intuitionistic logic in the spirit of Brouwer, but also in quantum logic in the spirit of von Neumann.


Quantum logic Topos theory Intuitionistic logic 


  1. 1.
    Banaschewski, B., Mulvey, C.J.: A globalisation of the Gelfand duality theorem. Ann. Pure Appl. Log. 137, 62–103 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936) CrossRefGoogle Scholar
  3. 3.
    Bohr, N.: Discussion with Einstein on epistemological problems in atomic physics. In: Schlipp, P.A. (ed.) Albert Einstein: Philosopher-Scientist. Open Court, La Salle (1949) Google Scholar
  4. 4.
    Bohr, N.: Quantum physics and philosophy—causality and complementarity. In: The Philosophical Writings of Niels Bohr, Vol. III: Essays 1958–1962 on Atomic Physics and Human Knowledge. Ox Bow, Woodbridge (1987) Google Scholar
  5. 5.
    Butterfield, J., Isham, C.J.: A topos perspective on the Kochen-Specker theorem II. Conceptual aspects and classical analogues. Int. J. Theor. Phys. 38, 827–859 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Coecke, B.: Quantum logic in intuitionistic perspective. Stud. Log. 70, 411–440 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Coquand, T.: About Stone’s notion of spectrum. J. Pure Appl. Algebra 197, 141–158 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Coquand, T., Spitters, B.: Formal topology and constructive mathematics: the Gelfand and Stone-Yosida representation theorems. J. Univers. Comput. Sci. 11, 1932–1944 (2005) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Coquand, T., Spitters, B.: Constructive Gelfand duality for C*-algebras. Math. Proc. Camb. Philos. Soc. (2009, in press) Google Scholar
  10. 10.
    Coquand, T., Spitters, B.: Integrals and valuations. Log. Anal. (2009, accepted) Google Scholar
  11. 11.
    Döring, A., Isham, C.J.: A topos foundation for theories of physics: I. Formal languages for physics. J. Math. Phys. 49, 053515 (2008) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Döring, A., Isham, C.J.: A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory. J. Math. Phys. 49, 053516 (2008) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Döring, A., Isham, C.J.: A topos foundation for theories of physics: III. The representation of physical quantities with arrows. J. Math. Phys. 49, 053517 (2008) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Döring, A., Isham, C.J.: A topos foundation for theories of physics: IV. Categories of systems. J. Math. Phys. 49, 053518 (2008) CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Fulton, W.: Young Tableaux. Cambridge University Press, Cambridge (1997) zbMATHGoogle Scholar
  16. 16.
    Goldblatt, R.: Topoi: The Categorial Analysis of Logic, 2nd edn. North-Holland, Amsterdam (1984) zbMATHGoogle Scholar
  17. 17.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994) zbMATHGoogle Scholar
  18. 18.
    Heisenberg, W.: Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys. 33, 879–893 (1925) CrossRefADSGoogle Scholar
  19. 19.
    Heunen, C., Landsman, N.P., Spitters, B.: A topos for algebraic quantum theory. Commun. Math. Phys. (2009, to appear). arXiv:0709.4364
  20. 20.
    Heunen, C., Landsman, N.P., Spitters, B.: Bohrification of von Neumann algebras and quantum logic. In preparation Google Scholar
  21. 21.
    Isham, C.J.: A topos perspective on state-vector reduction. arXiv:quant-ph/0508225
  22. 22.
    Isham, C.J., Butterfield, J.: Topos perspective on the Kochen-Specker theorem I. Quantum states as generalized valuations. Int. J. Theor. Phys. 37, 2669–2733 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982) zbMATHGoogle Scholar
  24. 24.
    Johnstone, P.T.: Open locales and exponentiation. Contemp. Math. 30, 84–116 (1984) MathSciNetGoogle Scholar
  25. 25.
    Johnstone, P.T.: Fiberwise separation axioms for locales. Math. Proc. Camb. Philos. Soc. 108, 247–256 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium, vols. 1, 2. Oxford University Press, Oxford (2002) Google Scholar
  27. 27.
    Joyal, A., Tierney, M.: An extension of the Galois theory of Grothendieck. Mem. Am. Math. Soc. 51 (1984) Google Scholar
  28. 28.
    Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967) zbMATHMathSciNetGoogle Scholar
  29. 29.
    Lahti, P.J.: Uncertainty and complementarity in axiomatic quantum mechanics. Int. J. Theor. Phys. 19, 789–842 (1980) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Lahti, P.J.: Characterization of quantum logics. Int. J. Theor. Phys. 19, 905–923 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Landsman, N.P.: Between classical and quantum. In: Butterfield, J., Earman, J. (eds.) Handbook of the Philosophy of Science, vol. 2: Philosophy of Physics, Part A, pp. 417–553. North-Holland, Amsterdam (2007) Google Scholar
  32. 32.
    Landsman, N.P.: Macroscopic observables and the Born rule. Rev. Math. Phys. 20, 1173–1190 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Berlin (1998) zbMATHGoogle Scholar
  34. 34.
    Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer, New York (1994) Google Scholar
  35. 35.
    Piron, C.: Foundations of Quantum Physics. Benjamin, Reading (1976) zbMATHGoogle Scholar
  36. 36.
    Rédei, M.: Quantum Logic in Algebraic Approach. Kluwer Academic, Dordrecht (1998) zbMATHGoogle Scholar
  37. 37.
    Redhead, M.: Completeness, Nonlocality and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics. Clarendon, Oxford (1987) Google Scholar
  38. 38.
    Varadarajan, V.S.: Geometry of Quantum Theory, 2nd edn. Springer, New York (1985) zbMATHGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Martijn Caspers
    • 1
  • Chris Heunen
    • 1
    • 2
  • Nicolaas P. Landsman
    • 1
  • Bas Spitters
    • 3
  1. 1.Institute for Mathematics, Astrophysics, and Particle PhysicsRadboud Universiteit NijmegenNijmegenThe Netherlands
  2. 2.Institute for Computing and Information SciencesRadboud Universiteit NijmegenNijmegenThe Netherlands
  3. 3.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations