Advertisement

Foundations of Physics

, Volume 38, Issue 12, pp 1133–1147 | Cite as

Notes on Joint Measurability of Quantum Observables

  • Teiko HeinosaariEmail author
  • Daniel Reitzner
  • Peter Stano
Article

Abstract

For sharp quantum observables the following facts hold: (i) if we have a collection of sharp observables and each pair of them is jointly measurable, then they are jointly measurable all together; (ii) if two sharp observables are jointly measurable, then their joint observable is unique and it gives the greatest lower bound for the effects corresponding to the observables; (iii) if we have two sharp observables and their every possible two outcome partitionings are jointly measurable, then the observables themselves are jointly measurable. We show that, in general, these properties do not hold. Also some possible candidates which would accompany joint measurability and generalize these apparently useful properties are discussed.

Keywords

Quantum observable Joint measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ali, S.T., Prugovečki, E.: Classical and quantum statistical mechanics in a common Liouville space. Phys. A 89, 501–521 (1977) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Brougham, T., Andersson, E.: Estimating the expectation values of spin-1/2 observables with finite resources. Phys. Rev. A 76, 052313 (2007) CrossRefADSGoogle Scholar
  3. 3.
    Busch, P.: Unsharp reality and joint measurements for spin observables. Phys. Rev. D 33, 2253–2261 (1986) CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Busch, P., Grabowski, M., Lahti, P.J.: Operational Quantum Physics, 2nd edn. Springer, Berlin (1997) Google Scholar
  5. 5.
    Busch, P., Heinonen, T., Lahti, P.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155–176 (2007) CrossRefADSGoogle Scholar
  6. 6.
    Busch, P., Heinosaari, T.: Approximate joint measurements of qubit observables. Quantum. Inf. Comput. 8, 0797–0818 (2008) Google Scholar
  7. 7.
    Busch, P., Schmidt, H.-J.: Coexistence of qubit effects. arXiv:0802.4167v3 [quant-ph] (2008) Google Scholar
  8. 8.
    Carmeli, C., Heinonen, T., Toigo, A.: On the coexistence of position and momentum observables. J. Phys. A 38, 5253–5266 (2005) zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London (1976) zbMATHGoogle Scholar
  10. 10.
    Gudder, S., Greechie, R.: Effect algebra counterexamples. Math. Slovaca 46, 317–325 (1996) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982) zbMATHGoogle Scholar
  12. 12.
    Lahti, P.: Coexistence and joint measurability in quantum mechanics. Int. J. Theor. Phys. 42, 893–906 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lahti, P., Pulmannová, S.: Coexistent observables and effects in quantum mechanics. Rep. Math. Phys. 39, 339–351 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Liu, N., Li, L., Yu, S., Chen, Z.-B.: Complementarity enforced by joint measurability of unsharp observables. arXiv:0712.3653v2 [quant-ph] (2008) Google Scholar
  15. 15.
    Molnár, L.: Characterizations of the automorphisms of Hilbert space effect algebras. Commun. Math. Phys. 223, 437–450 (2001) zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Moreland, T., Gudder, S.: Infima of Hilbert space effects. Linear Algebra Appl. 286, 1–17 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Stano, P., Reitzner, D., Heinosaari, T.: Coexistence of qubit effects. Phys. Rev. A 78, 012315 (2008) CrossRefADSGoogle Scholar
  18. 18.
    Yu, S., Liu, N., Li, L., Oh, C.H.: Joint measurement of two unsharp observables of a qubit. arXiv:0805.1538v1 [quant-ph] (2008) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Teiko Heinosaari
    • 1
    Email author
  • Daniel Reitzner
    • 2
  • Peter Stano
    • 2
  1. 1.Department of PhysicsUniversity of TurkuTurkuFinland
  2. 2.Research Center for Quantum InformationSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations