Foundations of Physics

, Volume 38, Issue 4, pp 322–347 | Cite as

Event-by-Event Simulation of Einstein-Podolsky-Rosen-Bohm Experiments

  • Shuang Zhao
  • Hans De Raedt
  • Kristel Michielsen
Open Access


We construct an event-based computer simulation model of the Einstein-Podolsky-Rosen-Bohm experiments with photons. The algorithm is a one-to-one copy of the data gathering and analysis procedures used in real laboratory experiments. We consider two types of experiments, those with a source emitting photons with opposite but otherwise unpredictable polarization and those with a source emitting photons with fixed polarization. In the simulation, the choice of the direction of polarization measurement for each detection event is arbitrary. We use three different procedures to identify pairs of photons and compute the frequency of coincidences by analyzing experimental data and simulation data. The model strictly satisfies Einstein’s criteria of local causality, does not rely on any concept of quantum theory and reproduces the results of quantum theory for both types of experiments. We give a rigorous proof that the probabilistic description of the simulation model yields the quantum theoretical expressions for the single- and two-particle expectation values.


Quantum theory EPR paradox Computational techniques 


  1. 1.
    Einstein, A., Podolsky, A., Rosen, N.: Phys. Rev. 47, 777 (1935) zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Bohm, D.: Quantum Theory. Prentice Hall, New York (1951) Google Scholar
  3. 3.
    Freedman, S.J., Clauser, J.F.: Phys. Rev. Lett. 28, 938 (1972) CrossRefADSGoogle Scholar
  4. 4.
    Aspect, A., Grangier, P., Roger, G.: Phys. Rev. Lett. 49, 91 (1982) CrossRefADSGoogle Scholar
  5. 5.
    Aspect, A., Dalibard, J., Roger, G.: Phys. Rev. Lett. 49, 1804 (1982) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Tapster, P.R., Rarity, J.G., Owens, P.C.M.: Phys. Rev. Lett. 73, 1923 (1994) CrossRefADSGoogle Scholar
  7. 7.
    Tittel, W., Brendel, J., Zbinden, H., Gisin, N.: Phys. Rev. Lett. 81, 3563 (1998) CrossRefADSGoogle Scholar
  8. 8.
    Weihs, G., Jennewein, T., Simon, C., Weinfurther, H., Zeilinger, A.: Phys. Rev. Lett. 81, 5039 (1998) zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Weihs, G.: Ph.D. thesis, University of Vienna (2000),
  10. 10.
    Rowe, M.A., Kielpinski, D., Meyer, V., Sackett, C.A., Itano, W.M., Monroe, C., Wineland, D.J.: Nature 401, 791 (2001) CrossRefGoogle Scholar
  11. 11.
    Fatal, D., Diamanti, E., Inoue, K., Yamamoto, Y.: Phys. Rev. Lett. 92, 037904 (2004) CrossRefADSGoogle Scholar
  12. 12.
    Sakai, H., Saito, T., Ikeda, T., Itoh, K., Kawabata, T., Kuboki, H., Maeda, Y., Matsui, N., Rangacharyulu, C., Sasano, M., et al.: Phys. Rev. Lett. 97, 150405 (2006) CrossRefADSGoogle Scholar
  13. 13.
    Home, D.: Conceptual Foundations of Quantum Physics. Plenum, New York (1997) zbMATHGoogle Scholar
  14. 14.
    Larsson, J.A., Gill, R.D.: Europhys. Lett. 67, 707 (2004) CrossRefADSGoogle Scholar
  15. 15.
    De Raedt, K., Keimpema, K., De Raedt, H., Michielsen, K., Miyashita, S.: Eur. Phys. J. B 53, 139 (2006) CrossRefADSGoogle Scholar
  16. 16.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1993) Google Scholar
  17. 17.
    Santos, E.: Stud. Hist. Philos. Mod. Phys. 36, 544 (2005) CrossRefGoogle Scholar
  18. 18.
    Ẑukowksi, M.: Stud. Hist. Philos. Mod. Phys. 36, 566 (2005), arXiv:quant-ph/0605034 CrossRefGoogle Scholar
  19. 19.
    Gill, R.D.: In: Proc. of “Foundations of Probability and Physics. 2”. Ser. Math. Modelling in Phys., Engin., and Cogn. Sc., vol. 5, pp. 179–206. Växjö University Press, Växjö (2003), arXiv:quant-ph/0301059 Google Scholar
  20. 20.
    De Raedt, H., De Raedt, K., Michielsen, K., Keimpema, K., Miyashita, S.: J. Phys. Soc. Jpn. 76, 104005 (2007) CrossRefADSGoogle Scholar
  21. 21.
    De Raedt, K., De Raedt, H., Michielsen, K.: Comput. Phys. Commun. 176, 642 (2007) CrossRefADSGoogle Scholar
  22. 22.
    De Raedt, H., De Raedt, K., Michielsen, K., Keimpema, K., Miyashita, S.: J. Comput. Theor. Nanosci. 4, 1 (2007) CrossRefGoogle Scholar
  23. 23.
    Clauser, J.F., Horne, M.A.: Phys. Rev. D 10, 526 (1974) CrossRefADSGoogle Scholar
  24. 24.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Phys. Rev. Lett. 23, 880 (1969) CrossRefADSGoogle Scholar
  25. 25. The results presented here have been obtained by assuming that the data sets *_V.DAT contain IEEE-8 byte (instead of 8-bit) double-precision numbers and that the least significant bit in *_C.DAT specifies the position of the switch instead of the detector that fired
  26. 26.
    Cirel’son, B.S.: Lett. Math. Phys. 4, 93 (1980) CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Born, M., Wolf, E.: Principles of Optics. Pergamon, Oxford (1964) Google Scholar
  28. 28.
    Grimmet, G.R., Stirzaker, D.R.: Probability and Random Processes. Clarendon, Oxford (1995) Google Scholar
  29. 29.
    Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003) zbMATHGoogle Scholar
  30. 30.
    Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (2003) Google Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Shuang Zhao
    • 1
  • Hans De Raedt
    • 1
  • Kristel Michielsen
    • 2
  1. 1.Department of Applied Physics, Zernike Institute for Advanced MaterialsUniversity of GroningenGroningenThe Netherlands
  2. 2.EMBDWommelgemBelgium

Personalised recommendations