Advertisement

Foundations of Physics

, 38:7 | Cite as

An Assessment of Evans’ Unified Field Theory I

  • Friedrich W. Hehl
Article

Abstract

Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. This geometry can be characterized by an orthonormal coframe ϑ α and a (metric compatible) Lorentz connection Γ α β . These two potentials yield the field strengths torsion T α and curvature R α β . Evans tried to infuse electromagnetic properties into this geometrical framework by putting the coframe ϑ α to be proportional to four extended electromagnetic potentials \(\mathcal{A}^{\alpha }\) ; these are assumed to encompass the conventional Maxwellian potential A in a suitable limit. The viable Einstein-Cartan (-Sciama-Kibble) theory of gravity was adopted by Evans to describe the gravitational sector of his theory. Including also the results of an accompanying paper by Obukhov and the author, we show that Evans’ ansatz for electromagnetism is untenable beyond repair both from a geometrical as well as from a physical point of view. As a consequence, his unified theory is obsolete.

Keywords

Electrodynamics Gravitation Einstein-Cartan theory Evans’ unified field theory 

References

  1. 1.
    Bishop, R.L., Crittenden, R.J.: Geometry of Manifolds. Academic Press, New York (1964) zbMATHGoogle Scholar
  2. 2.
    Blagojević, M.: Gravitation and Gauge Symmetries. Institute of Physics, Bristol (2002) zbMATHGoogle Scholar
  3. 3.
    Bruhn, G.W.: No energy to be extracted from the vacuum. Phys. Scr. 74, 535–536 (2006) zbMATHCrossRefADSGoogle Scholar
  4. 4.
    Bruhn, G.W.: No Lorentz property of M.W. Evans’ O(3)-symmetry law. Phys. Scr. 74, 537–538 (2006) zbMATHCrossRefADSGoogle Scholar
  5. 5.
    Bruhn, G.W.: On the non-Lorentz invariance of M.W. Evans’ O(3)-symmetry law. arXiv.org/ physics/0607186 Google Scholar
  6. 6.
    Bruhn, G.W.: The central error of M.W. Evans’ ECE theory—a type mismatch. arXiv.org/ physics/0607190 Google Scholar
  7. 7.
    Bruhn, G.W.: Refutation of Myron W. Evans B (3) field hypothesis. http://www.mathematik.tu-darmstadt.de/~bruhn/B3-refutation.htm
  8. 8.
    Bruhn, G.W.: Comments on M.W. Evans’ preprint chapter 2: duality and the antisymmetric metric, pp. 21–30. http://www.mathematik.tu-darmstadt.de/~bruhn/Comment-Chap2.htm
  9. 9.
    Bruhn, G.W.: Remarks on Evans’ 2nd Bianchi identity. http://www.mathematik.tu-darmstadt.de/~bruhn/EvansBianchi.html
  10. 10.
    Bruhn, G.W.: Comments on Evans’ duality. http://www.mathematik.tu-darmstadt.de/~bruhn/EvansDuality.html
  11. 11.
    Bruhn, G.W.: ECE Theory and Cartan geometry. http://www.mathematik.tu-darmstadt.de/~bruhn/ECE-CartanGeometry.html
  12. 12.
    Bruhn, G.W., Lakhtakia, A.: Commentary on Myron W. Evans’ paper “The electromagnetic sector ...”. http://www.mathematik.tu-darmstadt.de/~bruhn/EvansChap13.html
  13. 13.
    Cartan, É.: Sur une généralisation de la notion de corbure de Riemann et les espaces à torsion. C. R. Acad. Sci. (Paris) 174, 593–595 (1922) Google Scholar
  14. 14.
    Cartan, É.: On a generalization of the notion of Riemann curvature and spaces with torsion. In: Bergmann, P.G., De Sabbata, V. (eds.), Cosmology and Gravitation, pp. 489–491. Plenum, New York (1980) (Translation of [13] from the French by G.D. Kerlick). See also the remarks of A. Trautman, ibid. pp. 493–496 Google Scholar
  15. 15.
    Cartan, É.: On Manifolds with an Affine Connection and the Theory of General Relativity. Bibliopolis, Napoli (1986) (English translation of the French original) zbMATHGoogle Scholar
  16. 16.
    Cartan, E.: Riemannian Geometry in an Orthogonal Frame. World Scientific, Hackensack (2001), Sect. 87 (Translation from Russian by V.V. Goldberg) Google Scholar
  17. 17.
    Corson, E.M.: Introduction to Tensors, Spinors, and Relativistic Wave-Equations. Blackie, London (1953) zbMATHGoogle Scholar
  18. 18.
    Debever, R. (ed.): Elie Cartan—Albert Einstein, Lettres sur le Parallélisme Absolu 1929–1932, original letters with translations in English. Palais des Académies/Princeton University Press, Bruxelles/Princeton (1979) Google Scholar
  19. 19.
    de Carvalho, A.L.T., Rodrigues, W.A. Jr.: The non sequitur mathematics and physics of the ‘new electrodynamics’ of the AIAS group. Random Oper. Stoch. Equ. 9, 161–206 (2001). arXiv.org/physics/0302016 zbMATHCrossRefGoogle Scholar
  20. 20.
    Eckardt, H.: Slides from the first workshop on ECE theory. http://aias.us → publications → Results of first workshop
  21. 21.
    Evans, M.W.: Solutions of the ECE field equations, paper 50 of Evans’ theory. http://www.aias.us/documents/uft/a50thpaper.pdf
  22. 22.
    Evans, M.W.: Wave mechanics and ECE theory, paper 54 of Evans’ theory. http://www.aias.us/documents/uft/a54thpaper.pdf
  23. 23.
    Evans, M.W.: Generally covariant dynamics, paper 55 of Evans’ theory. http://www.aias.us/documents/uft/a55thpaper.pdf
  24. 24.
    Evans, M.W.: A generally covariant field equation for gravitation and electromagnetism. Found. Phys. Lett. 16, 369–377 (2003) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Evans, M.W.: The spinning and curving of spacetime: the electromagnetic and gravitational fields in the Evans field theory. Found. Phys. Lett. 18, 431–454 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Evans, M.W.: Generally Covariant Unified Field Theory, the Geometrization of Physics, vol. I. Arima, Suffolk (2005) Google Scholar
  27. 27.
    Evans, M.W.: Generally Covariant Unified Field Theory, the Geometrization of Physics, vol. II. Abramis Academic, publisher@abramin.co.uk (2006) Google Scholar
  28. 28.
    Evans, M.W.: Generally Covariant Unified Field Theory, the Geometrization of Physics, vol. III. Amazon.com (2006) Google Scholar
  29. 29.
    Evans, M.W., Eckardt, H.: The resonant Coulomb law of Einstein Cartan Evans theory, paper 63 of Evans’ theory. http://aias.us/documents/uft/a63rdpaper.pdf
  30. 30.
    Eyraud, H.: La théorie affine asymétrique du champs électromagnétique et gravifique et le rayonnement atomique. C. R. Acad. Sci. (Paris) 180, 1245–1248 (1925) zbMATHGoogle Scholar
  31. 31.
    Garcia, A.A., Hehl, F.W., Heinicke, C., Macias, A.: Exact vacuum solution of a (1+2)-dimensional Poincaré gauge theory: BTZ solution with torsion. Phys. Rev. D 67, 124016 (2003). arXiv:gr-qc/0302097 CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Goenner, H.F.M.: On the history of unified field theories. Living Rev. Relat. 7 (2004). http://www.livingreviews.org/lrr-2004-2H.Goenner (cited on 01 Dec 2006)
  33. 33.
    Gronwald, F.: Metric-affine gauge theory of gravity, I: fundamental structure and field equations. Int. J. Mod. Phys. D 6, 263–304 (1997). arXiv.org/gr-qc/9702034 zbMATHCrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Gronwald, F., Hehl, F.W.: On the gauge aspects of gravity. In: Bergmann, P.G. et al. (eds.) Proceeding of the International School of Cosmology and Gravitation. 14th Course: Quantum Gravity, Erice, Italy, pp. 148–198. World Scientific, Singapore (1996). arXiv.org/gr-qc/9602013 Google Scholar
  35. 35.
    Hehl, F.W.: On the kinematics of the torsion of space–time. Found. Phys. 15, 451–471 (1985) CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393–416 (1976) CrossRefADSGoogle Scholar
  37. 37.
    Hehl, F.W., McCrea, J.D.: Bianchi identities and the automatic conservation of energy–momentum and angular momentum in general-relativistic field theories. Found. Phys. 16, 267–293 (1986) CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1–171 (1995) CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Hehl, F.W., Obukhov, Yu.N.: Foundations of Classical Electrodynamics: Charge, Flux, and Metric. Birkhäuser, Boston (2003) zbMATHGoogle Scholar
  40. 40.
    Hehl, F.W., Obukhov, Y.N.: Electric/magnetic reciprocity in premetric electrodynamics with and without magnetic charge, and the complex electromagnetic field. Phys. Lett. A 323, 169–175 (2004). arXiv.org/physics/0401083 zbMATHCrossRefADSGoogle Scholar
  41. 41.
    Hehl, F.W., Obukhov, Yu.N.: Dimensions and units in electrodynamics. Gen. Relativ. Gravit. 37, 733–749 (2005). arXiv.org/physics/0407022 zbMATHCrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Hehl, F.W., Obukhov, Yu.N.: An assessment of Evans’ unified field theory II. Found. Phys. (2007). doi: 10.1007/s10701-007-0188-70. arXiv.org/physics/0703117 Google Scholar
  43. 43.
    Heinicke, C.: Exact solutions in Einstein’s theory and beyond. PhD thesis, University of Cologne (2005) Google Scholar
  44. 44.
    Heinicke, C., Baekler, P., Hehl, F.W.: Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity. Phys. Rev. D 72, 025012 (2005). arXiv.org/gr-qc/0504005 CrossRefADSMathSciNetGoogle Scholar
  45. 45.
    Horie, K.: Geometric interpretation of electromagnetism in a gravitational theory with torsion and spinorial matter, PhD thesis, University of Mainz (1995). arXiv.org/hep-th/9601066 Google Scholar
  46. 46.
    Infeld, L.: Zur Feldtheorie von Elektrizität und Gravitation. Phys. Z. 29, 145–147 (1928) Google Scholar
  47. 47.
    Itin, Y., Kaniel, S.: On a class of invariant coframe operators with application to gravity. J. Math. Phys. 41, 6318–6340 (2000). arXiv.org/gr-qc/9907023 zbMATHCrossRefADSMathSciNetGoogle Scholar
  48. 48.
    Itin, Y.: Energy-momentum current for coframe gravity. Class. Quantum Gravity 19, 173–189 (2002). arXiv.org/gr-qc/0111036 zbMATHCrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Jadczyk, A.: Vanishing vierbein in gauge theories of gravitation. arXiv.org/gr-qc/9909060 Google Scholar
  50. 50.
    Kaiser, G.: Energy-momentum conservation in pre-metric electrodynamics with magnetic charges. J. Phys. A 37, 7163–7168 (2004). arXiv.org/math-ph/0401028 zbMATHCrossRefADSMathSciNetGoogle Scholar
  51. 51.
    Kibble, T.W.B.: Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212–221 (1961) zbMATHCrossRefADSMathSciNetGoogle Scholar
  52. 52.
    Kuhfuss, R., Nitsch, J.: Propagating modes in gauge field theories of gravity. Gen. Relativ. Gravit. 18, 1207–1227 (1986) CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Lakhtakia, A.: Is Evans’ longitudinal ghost field B (3) unknowable? Found. Phys. Lett. 8, 183–186 (1995) CrossRefGoogle Scholar
  54. 54.
    Lämmerzahl, C., Macias, A., Mueller, H.: Lorentz invariance violation and charge (non-)conservation: a general theoretical frame for extensions of the Maxwell equations. Phys. Rev. D 71, 025007 (2005). arXiv.org/gr-qc/0501048 CrossRefADSGoogle Scholar
  55. 55.
    McCrea, J.D., Hehl, F.W., Mielke, E.W.: Mapping Noether identities into Bianchi identities in general relativistic field theories of gravity and in the field theory of static lattice defects. Int. J. Theor. Phys. 29, 1185–1206 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Obukhov, Y.N.: Poincaré gauge gravity: selected topics. Int. J. Geom. Methods Mod. Phys. 3, 95–138 (2006). arXiv.org/gr-qc/0601090 CrossRefMathSciNetGoogle Scholar
  57. 57.
    Obukhov, Y.N., Rubilar, G.F.: Invariant conserved currents in gravity theories with local Lorentz and diffeomorphism symmetry. Phys. Rev. D 74, 064002 (2006). arXiv.org/gr-qc/0608064 CrossRefADSMathSciNetGoogle Scholar
  58. 58.
    Particle Data Group: Review of particle physics. J. Phys. G 33, 1–1231 (2006) CrossRefGoogle Scholar
  59. 59.
    Pilch, K.: Geometrical meaning of the Poincaré group gauge theory. Lett. Math. Phys. 4, 49–51 (1980) CrossRefADSMathSciNetGoogle Scholar
  60. 60.
    Post, E.J.: Formal Structure of Electromagnetics—General Covariance and Electromagnetics. North-Holland/Dover, Amsterdam/Mineola (1962/1997) zbMATHGoogle Scholar
  61. 61.
    Rodrigues, W.A. Jr., Gomes de Souza, Q.A.: An ambiguous statement called ‘tetrad postulate’ and the correct field equations satisfied by the tetrad fields. Int. J. Mod. Phys. D 14, 2095–2150 (2005). arXiv.org/math-ph/0411085 zbMATHCrossRefADSGoogle Scholar
  62. 62.
    Ruggiero, M.L., Tartaglia, A.: Einstein–Cartan theory as a theory of defects in space–time. Am. J. Phys. 71, 1303–1313 (2003) CrossRefADSMathSciNetGoogle Scholar
  63. 63.
    Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1996) zbMATHGoogle Scholar
  64. 64.
    Schouten, J.A.: Ricci Calculus, 2nd edn. Springer, Berlin (1954) zbMATHGoogle Scholar
  65. 65.
    Schouten, J.A.: Tensor Analysis for Physicists, 2nd edn. reprinted. Dover, New York (1989) Google Scholar
  66. 66.
    Sciama, D.W.: On the analogy between charge and spin in general relativity. In: Recent Developments of General Relativity, pp. 415–439. Pergamon, London (1962) Google Scholar
  67. 67.
    Sciama, D.W.: The physical structure of general relativity. Rev. Mod. Phys. 36, 463–469 (1964); 1103(E) CrossRefADSGoogle Scholar
  68. 68.
    Sezgin, E., van Nieuwenhuizen, P.: New ghost free gravity Lagrangians with propagating torsion. Phys. Rev. D 21, 3269–3280 (1980) CrossRefADSMathSciNetGoogle Scholar
  69. 69.
    Sharpe, R.W.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. Springer, New York (1997) zbMATHGoogle Scholar
  70. 70.
    Tonnelat, M.A.: La théorie du champ unifié d’Einstein et quelques-uns de ses développements. Gauthier-Villars, Paris (1955) zbMATHGoogle Scholar
  71. 71.
    Trautman, A.: On the structure of the Einstein–Cartan equations. Symp. Math. 12, 139–162 (1973) MathSciNetGoogle Scholar
  72. 72.
    Trautman, A.: Einstein–Cartan theory. In: Francoise, J.-P. et al. (eds.) Encyclopedia of Mathematical Physics, pp. 189–195. Elsevier, Oxford (2006). arXiv.org/gr-qc/0606062 Google Scholar
  73. 73.
    Tresguerres, R., Mielke, E.W.: Gravitational Goldstone fields from affine gauge theory. Phys. Rev. D 62, 044004 (2000) CrossRefADSMathSciNetGoogle Scholar
  74. 74.
    Wielandt, E.: The superposition principle of waves not fulfilled under M.W. Evans’ O(3) hypothesis. Phys. Sc. 74, 539–540 (2006). arXiv. org/physics/0607262 zbMATHCrossRefADSGoogle Scholar
  75. 75.
    Wise, D.K.: MacDowell–Mansouri gravity and Cartan geometry. arXiv.org/gr-qc/0611154 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity at CologneKölnGermany
  2. 2.Department of Physics and AstronomyUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations