Foundations of Physics

, Volume 37, Issue 11, pp 1628–1642 | Cite as

Creation of Neutral Fundamental Particles in the Weyl–Dirac Version of Wesson’s IMT

Article

Abstract

Spherically symmetric entities filled with matter and induced by the 5D bulk may be built in the empty 4D space-time. The substance of the entity, the latter regarded as a fundamental particle, is characterized by the prematter equation of state P=−ρ. The particle is covered in a Schwarzschild-like envelope and from the outside it is characterized by mass and radius. One can regard these entities as neutral fundamental particles being constituents of quarks and leptons. The presented classical models are developed in the framework of a Weyl–Dirac version of Wesson’s Induced Matter Theory.

Keywords

General relativity Higher dimensions Wesson’s IMT Weyl–Dirac approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wesson, P.S.: Space–Time Matter. World Scientific, Singapore (1999) MATHGoogle Scholar
  2. 2.
    Seahra, S.S., Wesson, P.S.: Gen. Relativ. Gravit. 33, 1737 (2001) CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Seahra, S.S., Wesson, P.S.: Class. Quantum Gravity 20, 1321 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Seahra, S.S.: Phys. Rev. D 68, 104027 (2003) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Wesson, P.S.: Phys. Lett. B 538, 159 (2002) ADSMathSciNetGoogle Scholar
  6. 6.
    Wesson, P.S.: Gen. Relativ. Gravit. 38, 937 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Israelit, M.: Found. Phys. 35, 1725 (2005) MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Israelit, M.: Found. Phys. 35, 1769 (2005) MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Weyl, H.: Sitzungsber. Preuss. Akad. Wiss. 465 (1918) Google Scholar
  10. 10.
    Weyl, H.: Ann. Phys. (Leipzig) 59, 101 (1919) ADSGoogle Scholar
  11. 11.
    Weyl, H.: Raum, Zeit, Materie. Springer, Berlin (1923) Google Scholar
  12. 12.
    Dirac, P.A.M.: Proc. R. Soc. Lond. A 333, 403 (1973) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Rosen, N.: Found. Phys. 12, 213 (1982) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Israelit, M.: The Weyl–Dirac Theory and Our Universe. Nova Science, New York (1999) Google Scholar
  15. 15.
    Israelit, M., Rosen, N.: Astrophys. J. 342, 627 (1989) CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Rosen, N., Israelit, M.: Astrophys. Space Sci. 204, 317 (1993) MATHCrossRefADSGoogle Scholar
  17. 17.
    Landau, L., Lifshitz, E.: Field Theory. Pergamon, New York (1971) Google Scholar
  18. 18.
    Einstein, A., Rosen, N.: Phys. Rev. 48, 73 (1935) MATHCrossRefADSGoogle Scholar
  19. 19.
    Israelit, M., Rosen, N.: Found. Phys. 21, 1237 (1991) CrossRefADSGoogle Scholar
  20. 20.
    Israelit, M., Rosen, N.: Found. Phys. 22, 549 (1991) CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Gliner, E.: Sov. Phys. JETP 22, 378 (1966) ADSGoogle Scholar
  22. 22.
    Gliner, E.: Sov. Phys. Dokl. 15, 559 (1970) ADSGoogle Scholar
  23. 23.
    Jalalzadeh, S.: Gen. Relativ. Gravit. 39, 387 (2007) MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Physics and MathematicsUniversity of Haifa-OranimTivonIsrael

Personalised recommendations