Foundations of Physics

, Volume 37, Issue 6, pp 897–918 | Cite as

Can the Pioneer Anomaly be of Gravitational Origin? A Phenomenological Answer

  • Lorenzo IorioEmail author

In order to satisfy the equivalence principle, any non-conventional mechanism proposed to gravitationally explain the Pioneer anomaly, in the form in which it is presently known from the so-far analyzed Pioneer 10/11 data, cannot leave out of consideration its impact on the motion of the planets of the Solar System as well, especially those orbiting in the regions in which the anomalous behavior of the Pioneer probes manifested itself. In this paper we, first, discuss the residuals of the right ascension α and declination δ of Uranus, Neptune and Pluto obtained by processing various data sets with different, well-established dynamical theories (JPL DE, IAA EPM, VSOP). Second, we use the latest determinations of the perihelion secular precessions of some planets in order to put on the test two gravitational mechanisms recently proposed to accommodate the Pioneer anomaly based on two models of modified gravity. Finally, we adopt the ranging data to Voyager 2 when it encountered Uranus and Neptune to perform a further, independent test of the hypothesis that a Pioneer-like acceleration can also affect the motion of the outer planets of the Solar System. The obtained answers are negative.


gravity tests modified theories of gravity Pioneer anomaly 


04.80.-y 04.80.Cc 95.10.Eg 95.10.Km 95.10.Ce 95.55.Pe 


  1. 1.
    Anderson J.D., Laing P.A., Lau E.L., Liu A.S., Nieto M.M., Turyshev S.G. (1998). Phys. Rev. Lett. 81: 2858CrossRefADSGoogle Scholar
  2. 2.
    Anderson J.D., Laing P.A., Lau E.L., Liu A.S., Nieto M.M., Turyshev S.G. (2002). Phys. Rev. D 65: 082004CrossRefADSGoogle Scholar
  3. 3.
    Nieto M.M., Anderson J.D. (2005). Class. Quantum Grav. 22: 5343zbMATHCrossRefADSGoogle Scholar
  4. 4.
    Turyshev S.G., Toth V.T., Kellogg L.R., Lau E.L., Lee K.J. (2006). Int. J. Mod. Phys. D 15: 1zbMATHCrossRefADSGoogle Scholar
  5. 5.
    Turyshev S. G., Nieto M. M., and Anderson J. D., EAS Publication Series 20, 243 (2006b).Google Scholar
  6. 6.
    Dittus H., Turyshev S. G., Lämmerzahl C., Theil S., Förstner R., Johann U., W. Ertmer, Rasel E., Dachwald B., Seboldt W., Hehl F. W., Kiefer C., Blome H.-J., Kunz J., Giulini D., Bingham R., Kent B., Summer T. J., Bertolami O., Páramos J., Rosales J. L., B.Cristophe , Foulon B., Touboul P., Bouyer P., Reynaud S., Brillet A., Bondu F., Samain E., de Matos C. J., Erd C., Grenouilleau J. C., Izzo D., Rathke A., Anderson J. D., Asmar S. W., Lau E.E., Nieto M.M., Mashhoon B. (2005). ESA Spec. Publ. 588: 3ADSGoogle Scholar
  7. 7.
    Murphy E. M. (1999). Phys. Rev. Lett. 83: 1890CrossRefADSGoogle Scholar
  8. 8.
    Katz J. (1999). Phys. Rev. Lett. 83: 1892CrossRefADSGoogle Scholar
  9. 9.
    Anderson J.D., Laing P.A., Lau E.L., Liu A.S., Nieto M.M., Turyshev S.G. (1999a). Phys. Rev. Lett. 83: 1891CrossRefADSGoogle Scholar
  10. 10.
    Anderson J.D., Laing P.A., Lau E.L., Liu A.S., Nieto M.M., Turyshev S.G. (1999b). Phys. Rev. Lett. 83: 1893CrossRefADSGoogle Scholar
  11. 11.
    Anderson J.D., Campbell J.K., Nieto M.M. (2007). New Astron. 12: 383CrossRefADSGoogle Scholar
  12. 12.
    Will C.M. (2006). Living Rev Relativity, 9: 3 Scholar
  13. 13.
    Jaekel M.-T., Reynaud S. (2005a). Mod. Phys. Lett. A 20: 1047CrossRefADSGoogle Scholar
  14. 14.
    Jaekel M.-T., Reynaud S. (2005b). Class. Quantum Grav. 22: 2135zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Jaekel M.-T., Reynaud S. (2006a). Class. Quantum Grav. 23: 777zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Jaekel M.-T., Reynaud S. (2006b). Class. Quantum Grav. 23: 7561zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Brownstein J.R., Moffat J.W. (2006). Class. Quantum Grav. 23: 3427zbMATHCrossRefADSGoogle Scholar
  18. 18.
    Pitjeva E.V. (2005a). Sol. Sys. Res. 39: 176CrossRefADSGoogle Scholar
  19. 19.
    Pitjeva E.V. (2005b). Astron. Lett. 31: 340CrossRefADSGoogle Scholar
  20. 20.
    Pitjeva E. V., Limitations on some physical parameters from position observations of planets. Paper presented at 26th meeting of the IAU, Joint Discussion 16, #55, 22–23 August 2006, Prague, Czech Republic, (2006a).Google Scholar
  21. 21.
    Pitjeva E. V., Private communication, (2006b).Google Scholar
  22. 22.
    Anderson J.S., Lau E.L., Krisher T.P., Dicus D.A., Rosenbaum D.C., Teplitz V. L. (1995). Astroph. J. 448: 885CrossRefADSGoogle Scholar
  23. 23.
    Anderson J.D., Turyshev S.G., Nieto M.M. (2002). Bull. Am. Astron. Soc. 34: 1172ADSGoogle Scholar
  24. 24.
    E. L. Wright, Pioneer Anomalous Acceleration.˜ wright/PioneerAA.html, (2003).Google Scholar
  25. 25.
    Page G.L., Wallin J.F., Dixon D.S. (2005). Bull. Am. Astron. Soc. 37: 1414ADSGoogle Scholar
  26. 26.
    Iorio L., Giudice G. (2006). New Astron. 11: 600CrossRefADSGoogle Scholar
  27. 27.
    K. Tangen, Could the Pioneer anomaly have a gravitational origin? (2006). Scholar
  28. 28.
    Morrison L.V., Evans D.W. (1998). Astron Astrophys Suppl Ser. 132: 381CrossRefADSGoogle Scholar
  29. 29.
    Standish E. M., JPL Planetary and Lunar Ephemerides, DE405/LE405, Interoffice Memorandum 312.F-98-048 (1998).Google Scholar
  30. 30.
    Standish E.M. (1993). Astron. J. 105: 2000CrossRefADSGoogle Scholar
  31. 31.
    Standish E.M. (1982). Astron. Astrophys. 114: 297ADSGoogle Scholar
  32. 32.
    Gomes R.S., Ferraz-Mello S. (1987). Astron. Astrophys. 185: 327ADSGoogle Scholar
  33. 33.
    Bretagnon P. (1982). Astron. Astrophys. 114: 278zbMATHADSGoogle Scholar
  34. 34.
    Gemmo A.G., Barbieri C. (1994). Icarus 108: 174CrossRefADSGoogle Scholar
  35. 35.
    Rylkov V.P., Vityazev V.V., Dementieva A.A. (1995). Astron. Astrophys. Trans. 6: 265ADSGoogle Scholar
  36. 36.
    Standish E.M. (1990). Astron. Astrophys 233: 272ADSGoogle Scholar
  37. 37.
    Bertotti B., Iess L., Tortora P. (2003). Nature 425: 374CrossRefADSGoogle Scholar
  38. 38.
    Taylor J. R., An Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements. Second Edition. (University Science Books, 1997).Google Scholar
  39. 39.
    S. Kopeikin, G. Schäfer, A. Polnarev, and I. Vlasov, The orbital motion of Sun and a new test of general relativity using radio links with the Cassini spacecraft, (2006). Scholar
  40. 40.
    Turyshev S. G., M. Shao, and K. L. Nordtvedt Jr., Science, Technology and Mission Design for the Laser Astrometric Test of Relativity, to appear in Proceedings of the 359th WE-Heraeus Seminar on “Lasers, Clocks, and Drag-Free: Technologies for Future Exploration in Space and Tests of Gravity,” ZARM, Bremen, Germany, May 30–June 1, 2005, Scholar
  41. 41.
    Ni W.-T. (2002). Int. J. of Mod. Phys. D. 11: 947CrossRefADSGoogle Scholar
  42. 42.
    Vecchiato A., Lattanzi M.G., Bucciarelli B., Crosta M., de Felice F., Gai M. (2003). Astron Astrophys. 399: 337CrossRefADSGoogle Scholar
  43. 43.
    Moffat J.W. (2006a). J. Cosmol. Astropart. Phys. 3: 4CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Moffat J. W., A modified gravity and its consequences for the solar system, astrophysics and cosmology. Paper presented at International Workshop “From Quantum to Cosmos: Fundamental Physics in Space”, 22–24 May, 2006, Warrenton, Virginia, USA, gr-qc/0608074, (2006b).Google Scholar
  45. 45.
    Talmadge C., Berthias J.-P., Hellings R.W., Standish E.M. (1988). Phys. Rev. Lett. 61: 1159CrossRefADSGoogle Scholar
  46. 46.
    Sanders R.H. (2006). Mon. Not. Roy. Astron. Soc. 370: 1519CrossRefADSGoogle Scholar
  47. 47.
    Roy A. E., Orbital Motion. Fourth Edition. (Institute of Physics Publishing, Bristol, 2005).Google Scholar
  48. 48.
    P. G. ten Boom, Reinterpreting the Pioneer anomaly and its annual residual, (2005). Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.BariItaly

Personalised recommendations