Advertisement

Foundations of Physics

, Volume 37, Issue 4–5, pp 773–787 | Cite as

Relativistic Exponential Gravitation and Exponential Potential of Electric Charge

  • N. Ben-Amots
Article

We present theories of gravitation and electric potentials with exponential dependence on the reciprocal distance. In the context of this kind of electric potential we investigate the dynamics of a relativistic electron interacting with a proton.

Keywords

exponential potential sub-Bohr orbital variable rest mass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Schwarzschild, Sitzber. Deut. Akad. Wiss. Berlin, Konigl. Math.-Phys. Tech. 189–196 (1916).Google Scholar
  2. 2.
    R. Adler, M. Bazin, and M. Schiffer, Introduction to General Relativity (McGraw-Hill, New York, 1975). See pp. 192–195, especially p. 195.Google Scholar
  3. 3.
    Wald R.M. (1984) General Relativity. Chicago University Press, Chicago, p. 124zbMATHGoogle Scholar
  4. 4.
    Foster J., Nightingale J.D. (1995) A Short Course in General Relativity, 2nd edn. Springer, New York, p. 121Google Scholar
  5. 5.
    A. Vankov, “Does light gravitates? (Proposal on a new test of equivalence principle),” Arxiv/0012050 (12.2000).Google Scholar
  6. 6.
    A. Vankov, “Proposal of experimental test of general relativity theory,” Arxiv/0105057 (5.2001).Google Scholar
  7. 7.
    A. Vankov, “On problem of mass origin and self-energy divergence in relativistic mechanics and gravitational physics,” Arxiv:gr-qc/0311063 (20.11.2003).Google Scholar
  8. 8.
    E. A. Milne, Phil. Mag. 34(7), 235–245 (1943). See pp. 239–245.Google Scholar
  9. 9.
    E. A. Milne, Phil. Mag. 34(7), 246–258 (1943). See pp. 246–250.Google Scholar
  10. 10.
    E. A. Milne, Phil. Mag. 34(7), 712–716 (1943).Google Scholar
  11. 11.
    E. A. Milne, Kinematic Relativity (Clarendon Press, Oxford, UK, 1951 ed.) pp. 203–210, 214–220.Google Scholar
  12. 12.
    H. Yılmaz, Nuovo. Cim. B, 10B 79–101 (1972). See p. 87.Google Scholar
  13. 13.
    Yılmaz H. (1973). Nuovo. Cim. Lett. 7: 337–340Google Scholar
  14. 14.
    R. Kiesslinger, Gravitation Theory on the Testbench, Book (Nürnberg, Germany).Google Scholar
  15. 15.
    R. Kiesslinger, Gravitation in the Making (Überlingen, Germany).Google Scholar
  16. 16.
    A. Vankov, “Elimination of high-energy divergence in relativistic Lagrangean formulation of gravitating particle dynamics,” Arxiv:physics/0402117 (23.2.2004).Google Scholar
  17. 17.
    Hatch R.R. (1999). Galilean Electrodynamics 10(4): 69–75Google Scholar
  18. 18.
    D. Turanyanin, J. Theoretics (internet) (2004). See addendum.Google Scholar
  19. 19.
    Majerník V. (1985). Ast. Space Sci. 113: 199–203CrossRefADSGoogle Scholar
  20. 20.
    Richterek L., Majerník V. (1999). Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Physica 38: 47–58Google Scholar
  21. 21.
    P. Marmet, Einstein’s Theory of Relativity Versus Classical Mechanics (Newton Physics Books, Gloucester, Ontario, Canada, 1997). See Chapter 12.Google Scholar
  22. 22.
    N. Ben-Amots, Relativity, Gravitation, and Relativistic Rotation: Smoothing Some Paradoxes (book to be published).Google Scholar
  23. 23.
    S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972), pp. 78, 152.Google Scholar
  24. 24.
    Coleman C.J. (1971). J. Phys. A. 4: 611–616CrossRefADSGoogle Scholar
  25. 25.
    A. Einstein and L. Infeld, The Evolution of Physics (Simon & Schuster, New York, 1938). See pp. 256–258, 260.Google Scholar
  26. 26.
    J. Mehra, Einstein, Hilbert, and the Theory of Gravitation—Historical Origins of General Relativity Theory (Reidel, Dordrecht, 1974) pp. 6–8, 60–62.Google Scholar
  27. 27.
    M. J. Klein, A. J. Kox, J. Renn and R. Schulmann, The Collected Papers of Albert Einstein (Princeton University Press, 1995), Vol. 4: Doc 17 (pp. 486–503) and Doc 28 (pp. 589–597).Google Scholar
  28. 28.
    R. Arnowitt, S. Deser and C. W. Misner, “The dynamics of general relativity,” pp. 227–265 in Gravitation: An Introduction to Current Research, L. Witten, ed. (Wiley, New York, 1962). See Section 7–7.1: Physical basis of finiteness of self-energy when gravitation is included, pp. 256–257.Google Scholar
  29. 29.
    Noonan T. (1985). Astroph. J. 291: 422–446CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Reut Z. (1986). J. Mech. Appl. Math. 39: 417–423zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Torkelsson U. (1998). Eur. J. Phys. 19: 459–464zbMATHCrossRefGoogle Scholar
  32. 32.
    Qadir A., Quamar J. (1986). Europhys. Lett. 2: 423–425ADSGoogle Scholar
  33. 33.
    Lynden-Bell D., Katz J. (1985). Mon. Not. R. Astron. Soc. 213: 21–25ADSMathSciNetGoogle Scholar
  34. 34.
    Maddox J. (1985). Nature 314: 129CrossRefADSGoogle Scholar
  35. 35.
    Misner C.W., Thorne K.S., Wheeler J.A. (1973) Gravitation. Freeman, San Francisco p. 604Google Scholar
  36. 36.
    J. D. Bekenstein, Phys. Rev. D 15 1458–1468, (1977), especially p. 1461.Google Scholar
  37. 37.
    L. B. Szabados, “Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article,” in Living Rev. Relativity, 4, lrr-2004-4 (February 2004) (online article), cited on 24 October 2004, http://www.livingreviews.org/lrr-2004-4Google Scholar
  38. 38.
    Moffat J.W. (1979). Phys. Rev. D 19: 3354–3358ADSGoogle Scholar
  39. 39.
    Moffat J.W. (1989). Astroph. J. Lett. 347: L59–L60CrossRefADSGoogle Scholar
  40. 40.
    Cornish N.J., Moffat J.W. (1993). Phys. Rev. D 47: 4421–4424CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Cornish N.J., Moffat J.W. (1994). J. Math. Phys. 35: 6628–6635zbMATHCrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Cornish N.J., Moffat J.W. (1994). Phys. Lett. B 336: 337–342CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Moffat J.W. (1995). Phys. Lett. B 355: 447–452zbMATHCrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Moffat J.W. (1995). J. Math. Phys. 36: 3722–3732zbMATHCrossRefADSMathSciNetGoogle Scholar
  45. 45.
    H. Yılmaz, Nuovo. Cim. B 107B, 941–960 (8.1992). See pp. 944–945, 957.Google Scholar
  46. 46.
    Schiff L.I. (1960). Proc. Nat. Acad. Sci. 46: 871–882zbMATHCrossRefADSMathSciNetGoogle Scholar
  47. 47.
    L. I. Schiff, “Comparison of Theory and Observation in General Relativity”, in Relativity Theory and Astrophysics: I. Relativity and Cosmology, J. Ehlers, ed. (American Mathematical Society, Providence, RI, 1967), pp. 105–116 (especially p. 106).Google Scholar
  48. 48.
    C. M. Will, “The confrontation between general relativity and experiment,” in Living Rev. Relativity, 4, lrr-2001-4 (May, 2001) (online article). Cited on 19.1.2006: http://www.livingreviews.org/lrr-2001-4 . Updated February 2006: http://www.livingreviews.org/lrr-2006-3 or Arxiv:gr-qc/0510072 (10.2005).Google Scholar
  49. 49.
    Pravdo S.H. et al. (1999). Astron. J. 117: 1616–1633CrossRefADSGoogle Scholar
  50. 50.
    Jedicke R., Morbidelli A., Spahr T., Petit J.M., Bottke W.F. Jr. (2003). Icarus 161: 17–33CrossRefADSGoogle Scholar
  51. 51.
    Stuart J.S. (2001). Science 294: 1691–1693CrossRefADSGoogle Scholar
  52. 52.
    Jedicke R. (1996). Astron. J. 111: 970–982CrossRefADSGoogle Scholar
  53. 53.
    Boattini A., Carusi A. (1997). Vistas Astr. 41, part 4: 527–541CrossRefADSGoogle Scholar
  54. 54.
    Helin E.F., Shoemaker E.M. (1979). Icarus 40: 321–328CrossRefADSGoogle Scholar
  55. 55.
    E. F. Helin and R. S. Dunbar, Vistas Astr. 33, part 1, 21–37 (1990).Google Scholar
  56. 56.
    J. Chiaverini, S. J. Smullin, A. A. Geraci, D. M. Weld and A. Kapitulnik, Phys. Rev. Lett. 90(15), 151101/1-4 (2003).Google Scholar
  57. 57.
    S. J. Smullin, A. A. Geraci, D. M. Weld, J. Chiaverini, S. Holmes-S and A. Kapitulnik, Phys. Rev. D 72(12), 122001-1-20 (2005).Google Scholar
  58. 58.
    A. Schild, “Electromagnetic two-body problem,” Phys. Rev. 131, 2762–2766 (1963). See p. 2762.Google Scholar
  59. 59.
    R. C. Tolman, Relativity, Thermodynamics and Cosmology (Dover, New York, 1987). See Section 83: The Three Crucial Tests of Relativity, pp. 205–213.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.HaifaIsrael

Personalised recommendations