Advertisement

Foundations of Physics

, Volume 37, Issue 3, pp 446–454 | Cite as

Luminosity Distance, Angular Size and Surface Brightness in Cosmological General Relativity

  • John G. HartnettEmail author
  • Firmin J. Oliveira
Article

This paper corrects the explanation given by Oliveira and Hartnett, Found. Phys. Lett. 19(6), 519–535, 2006 for the luminosity distance in Cosmological General Relativity. The mathematical expression for the luminosity distance used in that paper is correct but the explanation in Eqs. (22) and (23) is flawed. Expressions for the angular size and surface brightness of sources are also derived. Finally some comment is made about the calculations of χ2 values in that paper compared with an earlier paper, Found. Phys. 36(6), 839–861, 2006.

Keywords

Carmeli’s cosmology luminosity distance angular size surface brightness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astier P. et al. (2006) “The supernova legacy survey: measurement of ΩM, ΩΛ and w from the first year data set”. A & A 447: 31–48ADSGoogle Scholar
  2. 2.
    Carmeli M. (2002) Cosmological Special Relativity, 2nd edn. World Scientific, SingaporezbMATHGoogle Scholar
  3. 3.
    M. Carmeli, “Accelerating universe: theory versus experiment,” arXiv: astro-ph/0205396 (2002).Google Scholar
  4. 4.
    Hartnett J.G. (2006) “The distance modulus determined from Carmeli’s cosmology fits the accelerating universe data of the high-redshift type Ia supernovae without dark matter”. Found. Phys. 36(6): 839–861zbMATHCrossRefGoogle Scholar
  5. 5.
    Ibid., Sec. 2.15.4, p. 23.Google Scholar
  6. 6.
    Knop R.A. et al. (2003). “New constraints on ΩM, ΩΛ and w from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope”. Ap. J. 598: 102–137CrossRefADSGoogle Scholar
  7. 7.
    Narlikar J.V. (2002) An Introduction to Cosmology, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Oliveira F.J., Hartnett J.G. (2006) “Carmeli’s cosmology fits data for an accelerating and decelerating universe without dark matter nor dark energy”. Found. Phys. Lett. 19(6): 519–535zbMATHCrossRefGoogle Scholar
  9. 9.
    Riess A.G. et al. (2004) “Type Ia supernovae discoveries at z >  1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution”. Ap. J. 607: 665–687CrossRefADSGoogle Scholar
  10. 10.
    R. P. Tilanus, Joint Astronomy Centre, 660 N. A‘ohoku Place, Hilo, Hawai‘i, U.S.A. 96720; Email: rpt@jach.hawaii.eduGoogle Scholar
  11. 11.
    Tolman R.C. (1930) “On the estimation of distances in a curved universe ith non-static line element”. Proc. Nat. Acad. Sci. 16: 515–520ADSGoogle Scholar
  12. 12.
    E. L. Wright, “Homogeneity and Isotropy; Many Distances; Scale Factor,” http://www.astro.ucla.edu/∼wright/cosmo_02.htmGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of PhysicsThe University of Western AustraliaCrawleyAustralia
  2. 2.Joint Astronomy Centre HiloHiloUSA

Personalised recommendations