Advertisement

Foundations of Physics

, Volume 37, Issue 3, pp 427–445 | Cite as

Relational EPR

  • Matteo Smerlak
  • Carlo Rovelli
Article

We study the EPR-type correlations from the perspective of the relational interpretation of quantum mechanics. We argue that these correlations do not entail any form of “non-locality”, when viewed in the context of this interpretation. The abandonment of strict Einstein realism implied by the relational stance permits to reconcile quantum mechanics, completeness, (operationally defined) separability, and locality.

Keywords

relational quantum mechanics non-locality EPR argument 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aspect A., Dalibard J., Roger G. (1982). Phys. Rev. Lett. 49: 1804–1807CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Aspect A., Grangier P., Roger G. (1982). Phys. Rev. Lett. 49: 91–94CrossRefADSGoogle Scholar
  3. 3.
    Isham C.J. (1995) Lectures on Quantum Theory: Mathematical and Structural Foundations. Imperial College Press, LondonMATHGoogle Scholar
  4. 4.
    Hardy L. (1993). Phys. Rev. Lett. 71: 1665–1668MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Stapp H.P. (2004). Am. J. Phys. 71: 30–33CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Rovelli C. (1996). Int. J. Theor. Phys. 35: 1637–1678MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    F. Laudisa and Rovelli C. in The Stanford Encyclopedia of Philosophy, E. N. Zalta, ed.; http://plato.stanford.edu/entries/qm-relational/Google Scholar
  8. 8.
    Grinbaum A. The Significance of Information in Quantum Theory, PhD thesis, Ecole Polytechnique, Paris, 2004.Google Scholar
  9. 9.
    Bitbol M. (2001). SATS (Nordic Journal of Philosophy) 2: 37–61Google Scholar
  10. 10.
    Bitbol M. “Remarques on Relational Quantum Mechanics” 2004, unpublished.Google Scholar
  11. 11.
    B. van Fraassen, “Rovelli’s World,” 2006 unpublished.Google Scholar
  12. 12.
    C. Rovelli, Quantum Gravity, Section 5.6 (Cambridge University Press, Cambridge, 2004).Google Scholar
  13. 13.
    Einstein A. Podolsky B., Rosen N. (1935). Phys. Rev. 47: 777–780CrossRefADSGoogle Scholar
  14. 14.
    Bell J.S. (1966). Rev. Mod. Phys. 38: 447–452MATHCrossRefADSGoogle Scholar
  15. 15.
    Kochen S., Specker E.J. (1967). Math. Mech. 17: 59–87MATHMathSciNetGoogle Scholar
  16. 16.
    d’Espagnat B. (1985) Une incertaine réalité. Gauthier-Villars, ParisGoogle Scholar
  17. 17.
    Rovelli C. (2004) Quantum Gravity. Cambridge University Press, CambridgeMATHGoogle Scholar
  18. 18.
    Bitbol M. (1983). Phys. Lett. A 96(2): 66–70CrossRefADSGoogle Scholar
  19. 19.
    Fuchs C.A. in Proceedings of the NATO Advanced Research Workshop on Decoherence and its Implications in Quantum Computation and Information Transfer, by Gonis A. ed. (IOS Press, Amsterdam, 2001).Google Scholar
  20. 20.
    Jaynes E.T. Clearing up mysteries—the original goal, opening talk at the 8’th International MAXENT Workshop, ST. John’s College, Cambridge, England, August 1–5, 1988, in Maximum Entropy and Bayesian Methods, Skilling J. ed. (Kluwer Academic, Dordrecht, 1989), pp. 1–27.Google Scholar
  21. 21.
    D. Deutsch and Hayden P. “Information Flow in Entangled Quantum Systems,” preprint arXiv: quant-ph/9906007Google Scholar
  22. 22.
    Peres A. (2004). Found. Phys. 35: 511–514CrossRefMathSciNetGoogle Scholar
  23. 23.
    Einstein A.J. (1950). Int. Coll. Surg. 14: 755–758Google Scholar
  24. 24.
    Fine A. (1996) The Shaky Game: Einstein Realism and the Quantum Theory. University of Chicago Press, ChicagoGoogle Scholar
  25. 25.
    Wittgenstein L. (1922) Tractatus Logico-Philosophicus. Routledge & Kegan Paul, LondonMATHGoogle Scholar
  26. 26.
    Petersen A. (1963). Bull. Atom. Sci. 19(7): 8–14Google Scholar
  27. 27.
    Caves C.M., Fuchs C.A., Schack R. (2002). Phys. Rev. A 65: 022305CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Dirac P.A.M. (1930) Principles of Quantum Mechanics. Oxford University Press, OxfordMATHGoogle Scholar
  29. 29.
    Howard D. (1985). Stud. Hist. Phil. Sci. 16: 171–201CrossRefMathSciNetGoogle Scholar
  30. 30.
    Peres A., Terno D.R. (2002). J. Mod. Opt. 49(8): 1255–1261MATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Aspect A. (2002) Reception Speech. Académie des Sciences, ParisGoogle Scholar
  32. 32.
    Page D. (1982). Phys. Lett. 91A: 57ADSMathSciNetGoogle Scholar
  33. 33.
    Laudisa F. (2001). Found. Phys. Lett. 14: 119–132CrossRefMathSciNetGoogle Scholar
  34. 34.
    Norsen T. “Against ‘realism’,” preprint arXiv: quant-ph/0607057.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.École Normale Supérieure de LyonLyonFrance
  2. 2.Centre de Physique Théorique de LuminyMarseilleFrance

Personalised recommendations