Foundations of Physics

, Volume 37, Issue 2, pp 295–305

Paradox in Wave-Particle Duality

  • Shahriar S. Afshar
  • Eduardo Flores
  • Keith F. McDonald
  • Ernst Knoesel
Article

We report on the simultaneous determination of complementary wave and particle aspects of light in a double-slit type “welcher-weg” experiment beyond the limitations set by Bohr’s Principle of Complementarity. Applying classical logic, we verify the presence of sharp interference in the single photon regime, while reliably maintaining the information about the particular pinhole through which each individual photon had passed. This experiment poses interesting questions on the validity of Complementarity in cases where measurements techniques that avoid Heisenberg’s uncertainty principle and quantum entanglement are employed. We further argue that the application of classical concepts of waves and particles as embodied in Complementarity leads to a logical inconsistency in the interpretation of this experiment.

Keywords

principle of complementarity wave-particle duality non- perturbative measurements double-slit experiment Afshar experiment 

PACS numbers:

03.65.Ta 42.50.Xa 14.70.Bh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bohr N., (1928). “The quantum postulate and the recent development of atomic theory”. Nature 121, 580MATHADSGoogle Scholar
  2. 2.
    Bohr N., Albert Einstein: Philosopher-Scientist, Schilpp P.A. ed. (Open Court, La Salle, IL, 1949), pp. 200–241Google Scholar
  3. 3.
    N. Bohr, “Maxwell and modern theoretical physics,” Nature 128, 691 (1931); reprinted in Niels Bohr Collected Works, Vol. 6: Foundations of Quantum Physics I (1926–1932), ed. J. Kalckar (North-Holland, Amsterdam, 1985), pp. 359–360Google Scholar
  4. 4.
    Feynman R.P., (1963) The Feynman Lectures on Physics, Vol 3. Addison-Wesley, Reading MA, pp. 1–9Google Scholar
  5. 5.
    Wooters W., Zurek W., (1979). “Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr’s principle”. Phys. Rev. D 19, 473CrossRefADSGoogle Scholar
  6. 6.
    Greenberger D., Yasin A., (1988). “Simultaneous wave and particle knowledge in a neutron interferometer”. Phys. Lett. A 128, 391CrossRefADSGoogle Scholar
  7. 7.
    Mandel L., (1991). “Coherence and indistinguishability”. Opt. Lett. 16: 1882ADSCrossRefGoogle Scholar
  8. 8.
    Jaeger G., Shimony A., Vaidman L., (1995). “Two interferometric complementarities”. Phys. Rev. A 51, 54CrossRefADSGoogle Scholar
  9. 9.
    Englert B.-G., (1996). “Fringe visibility and which-way information: An inequality”. Phys. Rev. Lett. 77: 2154CrossRefADSGoogle Scholar
  10. 10.
    Rauch H., Summhammer J., (1984). “Static versus time-dependent absorption in neutron interferometry”. Phys. Lett. A 104, 44CrossRefADSGoogle Scholar
  11. 11.
    Mittelstaedt P., Prieur A., Schieder R., (1987). “Unsharp particle–wave duality in a photon split-beam experiment”. Found. Phys. 17, 891CrossRefADSGoogle Scholar
  12. 12.
    Summhammer J., Rauch H., Tuppinger D., (1987). “Stochastic and deterministic absorption in neutron-interference experiment”. Phys. Rev. A 36: 4447CrossRefADSGoogle Scholar
  13. 13.
    Wiseman H.M., Harrison F.E., Collett M.J., Tan S.M., Walls D.F., Killip R.B. (1997). “Nonlocal momentum transfer in welcher-weg measurements”. Phys. Rev. A 56, 55CrossRefADSGoogle Scholar
  14. 14.
    Dürr S., Nonn T., Rempe G., (1998). “Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer”. Nature 395, 33CrossRefADSGoogle Scholar
  15. 15.
    Scully M.O., Englert B.-G., Walther H., (1991). “Quantum optical tests of complementarity”. Nature 351, 111CrossRefADSGoogle Scholar
  16. 16.
    De Martini F., De Dominicis L., Cioccolanti V., Milani G., (1992). “Stochastic interferometer”. Phys. Rev. A 45: 5144CrossRefADSGoogle Scholar
  17. 17.
    Dürr S., Rempe G., (2000). “Can wave–particle duality be based on the uncertainty relation?”. Am. J. Phys. 68: 1021CrossRefADSGoogle Scholar
  18. 18.
    Afshar S.S. “Sharp complementary wave and particle behaviours in the same welcher weg experiment,” Proc. SPIE 5866, 229–244 (2005); http://www.irims.org/quant-ph/030503; http://arxiv.org/abs/quant-ph/0701027Google Scholar
  19. 19.
    Afshar S.S. “Violation of Bohr’s complementarity: one slit or both?,” AIP Conf. Proc. 810, 294–299 (2006); http://www.irims.org/quant-ph/040901; http://arxiv.org/abs/quantph/0701028Google Scholar
  20. 20.
    Afshar S.S. “Experimental violation of complementarity: reply to critics,” submitted to Frontier Perspectives; http://www.itims.org/quant-ph/070101Google Scholar
  21. 21.
    Sanders B.C., Milburn G.J. (1989). “Complementarity in a quantum nondemolition measurement”. Phys. Rev. A 39, 694CrossRefADSGoogle Scholar
  22. 22.
    Pryde G.J., O’Brien J.L., White A.G., Bartlett S.D., Ralph T.C. (2004). “Measuring a photonic qubit without destroying it”. Phys. Rev. Lett. 92: 190402CrossRefADSGoogle Scholar
  23. 23.
    Wheeler J.A., Mathematical Foundations of Quantum Theory, A.R. Marlow, ed. (Academic, New York, 1978).Google Scholar
  24. 24.
    Bartell L.S., (1980). “Complementarity in the double-slit experiment: on simple realizable systems for observing intermediate particle-wave behavior”. Phys. Rev. D 21: 1698CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Hecht E., Zajac A., (1974). Optics. Addison-Wesley, Reading, MAGoogle Scholar
  26. 26.
    Wheeler J.A., “Beyond the black hole,” Some Strangeness in Proportion, H. Woolf, ed. (Addison-Wesley, Reading, MA, 1980), pp. 341–375Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Shahriar S. Afshar
    • 1
  • Eduardo Flores
    • 1
  • Keith F. McDonald
    • 1
  • Ernst Knoesel
    • 1
  1. 1.Department of Physics & AstronomyRowan UniversityGlassboroUSA

Personalised recommendations