Foundations of Physics

, Volume 37, Issue 2, pp 253–276 | Cite as

Branch Dependence in the “Consistent Histories” Approach to Quantum Mechanics

  • Thomas Müller

In the consistent histories formalism one specifies a family of histories as an exhaustive set of pairwise exclusive descriptions of the dynamics of a quantum system. We define branching families of histories, which strike a middle ground between the two available mathematically precise definitions of families of histories, viz., product families and Isham’s history projector operator formalism. The former are too narrow for applications, and the latter’s generality comes at a certain cost, barring an intuitive reading of the “histories”. Branching families retain the intuitiveness of product families, they allow for the interpretation of a history’s weight as a probability, and they allow one to distinguish two kinds of coarse-graining, leading to reconsidering the motivation for the consistency condition.


quantum histories branching time probability coarse graining 

PACS Numbers

03.65.Ca 03.65.Ta 05.30.-d 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aspect A., Dalibard J., Roger G., (1982). “Experimental test of Bell’s inequalities using time-varying analyzers”. Phys. Rev. Lett. 49: 1804–1807CrossRefADSMathSciNetGoogle Scholar
  2. Belnap N., (1992). “Branching space-time”. Synthese 92, 385–434zbMATHCrossRefMathSciNetGoogle Scholar
  3. Belnap N., (2005). “A theory of causation: Causae causantes (originating causes) as inus conditions in branching space-times”. Brit. J. Phil. Sci. 56, 221–253zbMATHCrossRefMathSciNetGoogle Scholar
  4. Belnap N., Perloff M., Xu M., (2001). Facing the Future. Oxford University Press, OxfordGoogle Scholar
  5. Dowker F., Kent A., (1996). “On the consistent histories approach to quantum mechanics”. J. Stat. Phys. 82: 1575–1646zbMATHCrossRefMathSciNetGoogle Scholar
  6. M. Gell-Mann and Hartle J., “Quantum mechanics in the light of quantum cosmology,” in Complexity, Entropy and the Physics of Information, W.H. Zurek, ed. 425–458 (Addison-Wesley, Reading, MA, 1990).Google Scholar
  7. Gell-Mann M., Hartle J., (1993). “Classical equations for quantum systems”. Phys. Rev. D 47: 3345–3382CrossRefADSMathSciNetGoogle Scholar
  8. Griffiths R.B., (1984). “Consistent histories and the interpretation of quantum mechanics”. J. Stat. Phys. 36, 219–272zbMATHCrossRefGoogle Scholar
  9. Griffiths R.B., (1998). “Choice of consistent family, and quantum incompatibility”. Phys. Rev. A 57: 1604–1618CrossRefADSGoogle Scholar
  10. Griffiths R.B., (2003). Consistent Quantum Theory. Cambridge University Press, CambridgeGoogle Scholar
  11. Isham C.J., (1994). “Quantum logic and the histories approach to quantum theory”. J. Math. Phys. 35: 2157–2185zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. Isham C.J., Linden N., (1994). “Quantum temporal logic and decoherence functionals in the histories approach to generalized quantum theory”. J. Math. Phys. 35: 5452–5476zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. Isham C.J., Linden N., Savvidou K., Schreckenberg S., (1998). “Continuous time and consistent histories”. J. Math. Phys. 39, 1818–1834zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. Kent A., (1998). “Quantum histories”. Physica Scripta T76: 78–84CrossRefADSMathSciNetGoogle Scholar
  15. Kent A., “Quantum histories and their implications,” In Relativistic Quantum Measurement and Decoherence, Springer Lecture Notes in Physics, 559, F. Petruccione ed. 93–115. (Springer, Heidelberg, 2000).Google Scholar
  16. Müller T., (2005). “Probability and causation. A branching space-times analysis”. Brit. J. Phil. Sci. 56, 487–520zbMATHCrossRefGoogle Scholar
  17. T. Müller, “Relativistic quantum histories in branching space-times,” in preparation (2007).Google Scholar
  18. Nisticò G., (1999). “Consistency conditions for probabilities of quantum histories”. Found. Phys. 29, 221–229CrossRefMathSciNetGoogle Scholar
  19. Omnès R., (1994). The Interpretation of Quantum Mechanics. Princeton University Press, PrincetonzbMATHGoogle Scholar
  20. Peres A., (2000). “Classical interventions in quantum systems I: The measuring process”. Phys. Rev. A 61: 022116CrossRefADSMathSciNetGoogle Scholar
  21. Prior A.N., (1967). Past, Present and Future. Oxford University Press, OxfordzbMATHGoogle Scholar
  22. Xu M., (1997). “Causation in branching time (I): Transitions, events and causes”. Synthese 112, 137–192zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institut für PhilosophieBonnGermany

Personalised recommendations