Foundations of Physics

, Volume 36, Issue 11, pp 1701–1717 | Cite as

On the Material Invariant Formulation of Maxwell’s Displacement Current


Maxwell accounted for the apparent elastic behavior of the electromagnetic field by augmenting Ampere’s law with the so-called displacement current, in much the same way that he treated the viscoelasticity of gases. Maxwell’s original constitutive relations for both electrodynamics and fluid dynamics were not material invariant. In the theory of viscoelastic fluids, the situation was later corrected by Oldroyd, who introduced the upper-convective derivative. Assuming that the electromagnetic field should follow the general requirements for a material field, we show that if the upper convected derivative is used in place of the partial time derivative in the displacement current term, Maxwell’s electrodynamics becomes material invariant. Note, that the material invariance of Faraday’s law is automatically established if the Lorentz force is admitted as an integral part of the model. The new formulation ensures that the equation for conservation of charge is also material invariant in vacuo. The viscoelastic medium whose apparent manifestation are the known phenomena of electrodynamics is called here the metacontinuum.


Maxwell’s electrodynamics Hertz’s equations material invariance Oldroyd’s upper-convected derivative 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson J.D., Laing P.A., Lau E.L., Liu A.S., Nieto M.M., Turyshev S.G., (2002). “Study of the anomalous acceleration of Pioneer 10 and 11”. Phys. Rev. D 65: 082004CrossRefADSGoogle Scholar
  2. 2.
    Bennett C.L. et al., (2003). “First-year wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results”. Astrophys. J. Suppl. 148, 1–27CrossRefADSGoogle Scholar
  3. 3.
    Bird R.B., Armstrong R.C., Hassager O., (1987). Dynamics of Polymeric Liquids, Vol.1. Fluid Mechanics. Wiley, New YorkGoogle Scholar
  4. 4.
    Bullough R.K. and Caudrey F., “Soliton and its history,” in Solitons, Bullough R.K. and Caudrey F., eds. (Springer, Berlin, 1980), pp. 11–77Google Scholar
  5. 5.
    Cantrell W.H., (2001). “Commentary on Maxwell’s equations and special relativity theory”. Infin. Energy 7(38): 12–18Google Scholar
  6. 6.
    Christov C.I., “Discrete out of continuous: dynamics of phase patterns in continua,” in Continuum Models and Discrete Systems—Proceedings of CMDS8, K. Markov, ed. (World Scientific, Singapore, 1996), pp. 370–394Google Scholar
  7. 7.
    Christov C.I., (2001). “On the analogy between the Maxwell electromagnetic field and the elastic continuum”. Annu. Univ. Sofia 95, 109–121Google Scholar
  8. 8.
    Christov C.I., “Dynamics of patterns on elastic hypersurfaces. Part I. Shear waves in the middle surface; Part II. Wave mechanics of flexural quasi-particles,” in ISIS International Symposium on Interdisciplinary Science Proceedings, Natchitoches, October 6–8, 2004 (AIP Conference Proceedings 755, Washington DC, 2005), pp. 46–60Google Scholar
  9. 9.
    Christov C.I., “Maxwell–Lorentz electrodynamics as manifestation of the dynamics of a viscoelastic metacontinuum,” Math. Comput. Simul. Submitted.Google Scholar
  10. 10.
    Christov C.I., Jordan P.M., (2005). “Heat conduction paradox involving second sound propagation in moving media”. Phys. Rev. Lett. 94: 154301CrossRefADSGoogle Scholar
  11. 11.
    Corey B.E., Wilkinson D.T., (1976). “A measurement of the cosmic microwave background anysotropy at 19GHz”. Bull. Astron. Astrophys. Soc. 8, 351ADSGoogle Scholar
  12. 12.
    Dunning-Davies J., (2005). “A re-examination of Maxwell’s electromagnetic equations”. Prog. Phys. 3, 48–50MathSciNetGoogle Scholar
  13. 13.
    Einstein A., (1961). Relativity. The Special and the General Theory. Three Rivers Press, New YorkMATHGoogle Scholar
  14. 14.
    Gill T.P., (1965). The Doppler Effect. Logos Press, LondonGoogle Scholar
  15. 15.
    Griffiths D.J., (1981). Introduction to Electrodynamics, 2nd edn. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  16. 16.
    Hertz H., (1900). Electric Waves. MacMillan, LondonGoogle Scholar
  17. 17.
    Hinton C.H., in Speculations on the Fourth Dimension. Selected Writings of Hinton C.H., B R.V.. Rucker, ed. (Dover, New York, 1980).Google Scholar
  18. 18.
    Jackson J.D., (1975). Classical Electrodynamics, 2nd edn. Wiley, New YorkMATHGoogle Scholar
  19. 19.
    Jordan P.M., Puri A., (2005). “Revisiting Stokes first problem for Maxwell fluids”. Mech Q.J.. Appl. Math. 58(2): 213–227MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kalutza T.,“Zum unitatsproblem der physik,” Sitz. Preuss. Acad. Wiss. S966 (1921).Google Scholar
  21. 21.
    Klein O., (1926). “Quantentheorie und fünfdimensionale relativitätstheorie”. Z. Phy. 37, 895–906CrossRefADSGoogle Scholar
  22. 22.
    Landau L.D., Lifschitz M.E., (2000). The Classical Theory of Fields, 4th edn. Reed Educational and Professional Publishing, New YorkGoogle Scholar
  23. 23.
    LeBellac M., Lévy-Leblond J.-M., (1973). “Galilean electromagnetism”. Il Nuovo Cimento 14B(2): 217–233Google Scholar
  24. 24.
    Lorentz H.A., (1952). The Theory of Electrons and its Applications to the Phenomena of Light and Radiant Heat, 2nd edn. Dover, New YorkGoogle Scholar
  25. 25.
    Lovelock D., Rund H., (1989). Tensors, Differential Forms, and Variational Principles. Dover, New YorkGoogle Scholar
  26. 26.
    Maxwell J.C., (1865). “A dynamical theory of the electromagnetic field”. Philos. Trans. R. Soc. Lond. 155, 469–512Google Scholar
  27. 27.
    Maxwell J.C. (1867).“On the dynamical theory of gases”. Philos. Trans. R. Soc. Lond. 157, 49–88Google Scholar
  28. 28.
    Newell A.C., (1985). Solitons in Mathematics and Physics. SIAM, PhiladelphiaGoogle Scholar
  29. 29.
    Oldroyd J.G., (1949). “On the formulation of rheological equations of state”. Proc. R. Soc. A 200, 523–541MathSciNetADSGoogle Scholar
  30. 30.
    Phipps T.E., Jr, (1986). Heretical Verities: Mathematical Themes in Physical Description. Classic Non-Fiction Library, Urbana, ILGoogle Scholar
  31. 31.
    Pots E.J., (1997). Formal Structure of Electromagnetics General Covariance and Electromagnetics. Dover, MineolaGoogle Scholar
  32. 32.
    Purcell E.M., (1965). Electricity and Magnetism. McGraw-Hill, New YorkGoogle Scholar
  33. 33.
    Renshaw C., “Explanation of the anomalous Doppler observations in Pioneer 10 and 11,” in Aerospace Conference, 1999. Proc. IEEE 2, 59–63 (1999). Digital Object Identifier 10.1109/AERO.1999.793143.Google Scholar
  34. 34.
    Schrödinger E., (1950). Space–Time Stucture. Cambridge Univeristy Press, Cambridge, MAGoogle Scholar
  35. 35.
    Smoot G.F., Gorenstein M.V., Miller R.A., (1977). “Detection of anisotropy in the cosmic blackbody radiation”. Phys. Rev. Lett. 39, 898–901CrossRefADSGoogle Scholar
  36. 36.
    Triffeault J.-L., (2001). “Covariant time derivative for dynamical systems”. J. Phys. A: Math. Gen. 34: 5875–5885CrossRefADSGoogle Scholar
  37. 37.
    Truesdell C. and Noll W., “The non-linear field theories of mechanics,” in Encyclopedia of Physics, S. Függe, ed. Vol. III/3 (Springer, Berlin, 1965).Google Scholar
  38. 38.
    van Dantzig D., (1934). “The fundamental equations of electromagnetism, independent of metrical geometry”. Proc. Camb. Philos. Soc. 30, 421–427MATHCrossRefGoogle Scholar
  39. 39.
    Whittaker E., (1989). A History of the Theories of Aether & Electricity, Vol 1. Dover, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Louisiana at LafayetteLafayetteUSA

Personalised recommendations