Foundations of Physics

, Volume 36, Issue 10, pp 1441–1473

The Free Will Theorem

Article

Abstract

On the basis of three physical axioms, we prove that if the choice of a particular type of spin 1 experiment is not a function of the information accessible to the experimenters, then its outcome is equally not a function of the information accessible to the particles. We show that this result is robust, and deduce that neither hidden variable theories nor mechanisms of the GRW type for wave function collapse can be made relativistic and causal. We also establish the consistency of our axioms and discuss the philosophical implications.

Keywords

EPR entanglement K–S paradox indeterminacy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maudlin T. (1994). Quantum Non-Locality and Relativity. Blackwell, OxfordGoogle Scholar
  2. 2.
    Curie P. (1894). J. Phys. (Paris) 3:393MATHGoogle Scholar
  3. 3.
    Greenberger D.M., Horne M.A., Shimony A., Zeilinger A. (1990). Am. J. Phys. 58(12):1131MATHMathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Heywood P., Redhead M.L.G. (1983). Found. Phys. 13:481MathSciNetCrossRefGoogle Scholar
  5. 5.
    Larsson J.-A. (2002). Europhys. Lett. 58(6):799CrossRefADSGoogle Scholar
  6. 6.
    C. Simon, C. Brukner and A. Zeilinger, arXiv: quant-ph/0006043v2 (28 Mar 2001).Google Scholar
  7. 7.
    Kochen S., Specker E. (1967). J. Math. Mech. 17:59MATHMathSciNetGoogle Scholar
  8. 8.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, 1993).Google Scholar
  9. 9.
    Pan J.-W., Bouwmeester D.B., Daniell M., Weinfurter H., Zeilinger A. (2000). Nature. Lett. 403:515ADSGoogle Scholar
  10. 10.
    Weils G., Jennewein T., Simon C., Weinfurter H., Zeilinger A. (1998). Phys. Rev. Lett. 81(23):5039MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Stefanov A., Zbinden H., Gisin N., Suarez A. (2002). Phys. Rev. Lett. 88(120404):1Google Scholar
  12. 12.
    Gisin N., Brendel J., Tittle W., Zbinden H. (1998). Phys. Rev. Lett. 81:3563CrossRefADSGoogle Scholar
  13. 13.
    H. Zbinden, J. Brendel, N. Gisin and W. Tittel, Phys. Rev. A 63(022111), 1 (2001).Google Scholar
  14. 14.
    Bassi A., Ghirardi G.C. (2003). Phys. Rep. 379(5–6):257MATHMathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Albert D.Z., Vaidman L. (1989). Phys. Lett. A 139(1, 2):1MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Redhead M. (1987). Incompleteness, Non-Locality, and Realism. Clarendon, OxfordGoogle Scholar
  17. 17.
    Wrede E. (1927). Z. Phys. 44:261CrossRefGoogle Scholar
  18. 18.
    J. Conway and S. Kochen, in Quantum Unspeakables R. A. Bertlmann and A. Zeilinger, eds. (Springer, Newyork, 2002), pp. 257–270.Google Scholar
  19. 19.
    R. Tumulka, arXiv: quant-ph/040609v1 (14 Jun 2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations