Foundations of Physics

, Volume 36, Issue 8, pp 1244–1285

Aberration and the Fundamental Speed of Gravity in the Jovian Deflection Experiment

Article

Abstract

We describe our explicit Lorentz-invariant solution of the Einstein and null geodesic equations for the deflection experiment of 2002 September 8 when a massive moving body, Jupiter, passed within 3.7’ of a line-of-sight to a distant quasar. We develop a general relativistic framework which shows that our measurement of the retarded position of a moving light-ray deflecting body (Jupiter) by making use of the gravitational time delay of quasar’s radio wave is equivalent to comparison of the relativistic laws of the Lorentz transformation for gravity and light. Because, according to Einstein, the Lorentz transformation of gravity field variables must depend on a fundamental speed c, its measurement through the retarded position of Jupiter in the gravitational time delay allows us to study the causal nature of gravity and to set an upper limit on the speed of propagation of gravity in the near zone of the solar system as contrasted to the speed of the radio waves. In particular, the v/c term beyond of the standard Einstein’s deflection, which we measured to 20% accuracy, is associated with the aberration of the null direction of the gravity force (“aberration of gravity”) caused by the Lorentz transformation of the Christoffel symbols from the static frame of Jupiter to the moving frame of observer. General relativistic formulation of the experiment identifies the aberration of gravity with the retardation of gravity because the speed of gravitational waves in Einstein’s theory is equal to the speed of propagation of the gravity force. We discuss the misconceptions which have inhibited the acceptance of this interpretation of the experiment. We also comment on other interpretations of this experiment by Asada, Will, Samuel, Pascual–Sánchez, and Carlip and show that their “speed of light” interpretations confuse the Lorentz transformation for gravity with that for light, and the fundamental speed of gravity with the physical speed of light from the quasar. For this reason, the “speed of light” interpretations are not entirely consistent with a retarded Liénard–Wiechert solution of the Einstein equations, and do not properly incorporate how the phase of the radio waves from the quasar is perturbed by the retarded gravitational field of Jupiter. Although all of the formulations predict the same deflection to the order of v/c, our formulation shows that the underlying cause of this deflection term is associated with the aberration of gravity and not of light, and that the interpretations predict different deflections at higher orders of v/c beyond the Shapiro delay, thus, making their measurement highly desirable for deeper testing of general relativity in future astrometric experiments like Gaia, SIM, and SKA.

Keywords

general relativity experimental gravity speed of gravity speed of light 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kopeikin S.M. (2001). Astrophys. J. Lett. 556, L1CrossRefADSGoogle Scholar
  2. 2.
    Fomalont E.B., Kopeikin S.M. (2003). Astrophys. J. 598, 704CrossRefADSGoogle Scholar
  3. 3.
    Seelig C. (1956). Albert Einstein: A Documentary Biography. Staples Press, LondonGoogle Scholar
  4. 4.
    Misner C.W., Thorne K.S., Wheeler J.A. (1973). Gravitation. Freeman, New YorkGoogle Scholar
  5. 5.
    Frittelli S. (2003). Mon. Not. R. Astron. Soc. 344, L85CrossRefADSGoogle Scholar
  6. 6.
    Asada H. (2002). Astrophys. J. Lett. 574, L69CrossRefADSGoogle Scholar
  7. 7.
    Will C.M. (2003). Astrophys. J. 590, 683CrossRefADSGoogle Scholar
  8. 8.
    Carlip S. (2004). Clas. Quant. Grav. 21: 3803MATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    S. Samuel, Phys. Rev. Lett. 90, id. 231101 (2003); Int. J. Mod. Phys. D 13, 1753 (2004).Google Scholar
  10. 10.
    Pascual-Sánchez J.-F. (2004). Int. J. Mod. Phys. D 13: 2345MATHCrossRefADSGoogle Scholar
  11. 11.
    Carlip S. (2000). Phys. Lett. A 267: 81MATHMathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Jackson J.D. (1999). Classical Electrodynamics. Wiley, New YorkMATHGoogle Scholar
  13. 13.
    Feynman R.P., Leighton R.B., Sands M. (1970). The Feynman Lectures on Physics. Addison-Wesley, Reading, MAMATHGoogle Scholar
  14. 14.
    T. Damour, in Gravitational Radiation, N. Deruelle and T. Piran, eds. (North-Holland, Amsterdam, 1983), pp. 59–144.Google Scholar
  15. 15.
    S. M. Kopeikin and E. B. Fomalont, in Proceeding of the 6th European VLBI Network Symposium on New Developments in VLBI Science and Technology, E. Ros, R. W. Porcas, A. P. Lobanov and J. A. Zensus, eds. (Max-Planck-Institut für Radioastronomie, Bonn, 2002), pp. 49–52, e-print: gr-qc/0206022.Google Scholar
  16. 16.
    Bel L., Deruelle N., Damour T., Ibanez J., Martin J. (1981). Gen. Rel. Grav. 13, 963MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    S. M. Kopeikin and G. Schäfer, Phys. Rev. D 60, id. 124002 (1999).Google Scholar
  18. 18.
    Pirani F.A.E. (1964), Lectures on General Relativity, Vol. 1. Prentice-Hall, New Jersey, pp. 249–373MATHGoogle Scholar
  19. 19.
    S. M. Kopeikin, G. Schäfer, C. R. Gwinn, and T. M. Eubanks, Phys. Rev. D 59, id. 84023 (1999).Google Scholar
  20. 20.
    J. M. Weisberg and J. H. Taylor, in Radio Pulsars ASP Conf. Ser. Vol. 302, M. Bailes, D. J. Nice and S. E. Thorsett, eds. (Sheridan Book, Ann Arbor, 2003), pp. 93–98.Google Scholar
  21. 21.
    Kopeikin S.M. (2004). Class. Quantum Grav. 21: 3251MATHMathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Will C.M. (1993). Theory and Experiment in Gravitational Physics. Cambridge University Press, CambridgeMATHGoogle Scholar
  23. 23.
    Bonilla M.Á.G., Senovilla J.M.M. (1997). Phys. Rev. Lett 78, 783CrossRefADSGoogle Scholar
  24. 24.
    B. Mashhoon, in Reference Frames and Gravitomagnetism, J. F. Pascual-Sánchez, L. Floría, A. San Miguel and F. Vicente, eds. (World Scientific, Singapore, 2001), pp. 121–132.Google Scholar
  25. 25.
    Kopeikin S.M. (2003). Phys. Lett. A 312, 147CrossRefADSGoogle Scholar
  26. 26.
    Landau L.D., Lifshitz E.M. (1971). The Classical Theory of Fields. Pergamon, OxfordMATHGoogle Scholar
  27. 27.
    V. P. Frolov, in Problems in the General Theory of Relativity and Theory of Group Representations, N. G. Basov, ed., Vol. 96, (Proc. Lebedev Physics Institute, Moscow, 1986), pp. 73–185.Google Scholar
  28. 28.
    S. M. Kopeikin and B. Mashhoon, Phys. Rev. D 65, id. 064025 (2002).Google Scholar
  29. 29.
    E. M. Standish and J. G. Williams, “Orbital ephemerides of the Sun, Moon, and Planets,” in Explanatory Supplement to the Astronomical Almanac Chapter 5, P. K. Seidelmann, ed. (US Naval Observatory, Washington DC, 2006).Google Scholar
  30. 30.
    S. M. Kopeikin, Int. J. Mod. Phys. D 15, (2006) (in press) e-print: gr-qc/0507001.Google Scholar
  31. 31.
    S. M. Kopeikin, Int. J. Mod. Phys. D 15, (2006) (in press) e-print: gr-qc/0501001.Google Scholar
  32. 32.
    S. M. Kopeikin and E. B. Fomalont, Phys. Lett. A (2006) (in press) e-print: gr-qc/0310065.Google Scholar
  33. 33.
    Shapiro I.I. (1964). Phys. Rev. Lett. 13, 789MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Klioner S.A. (2003). Astron. Astrophys 404, 783MATHCrossRefADSGoogle Scholar
  35. 35.
    Babak S.V, Grishchuk L.P. (2003). Int. J. Mod. Phys. D 12: 1905MATHMathSciNetCrossRefADSGoogle Scholar
  36. 36.
    Kopeikin S.M. (1985). Sov. Astron. 29, 516ADSGoogle Scholar
  37. 37.
    L. P. Grishchuk and S. M. Kopeikin, “Equations of motion for isolated bodies with relativistic corrections including the radiation reaction force,” in IAU Symp. 114: Relativity in Celestial Mechanics and Astrometry, J. Kovalevsky and V. A. Brumberg, eds. (Reidel, Dordrecht, 1986), pp. 19–34.Google Scholar
  38. 38.
    T. Damour, “The problem of motion in Newtonian and Einsteinian gravity,” In: Three Hundred Years of Gravitation, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1987), pp. 128–198.Google Scholar
  39. 39.
    Moore G.D., Nelson A.E. (2001). J. High Energy Phys. 0109, 023CrossRefADSGoogle Scholar
  40. 40.
    H. Asada, Int. J. Mod. Phys. D 15, (2006) (in press).Google Scholar
  41. 41.
    see http://www.ligo.caltech.edu/.Google Scholar
  42. 42.
    see http://lisa.jpl.nasa.gov/.Google Scholar
  43. 43.
    Braginskii V.B. (2003). Physics-Uspekhi 46, 81CrossRefGoogle Scholar
  44. 44.
    C. M. Will, “Has the speed of gravity been measured?,” see http://wugrav.wustl. edu/people/CMW/SpeedofGravity.html (cited on March 24, 2006).Google Scholar
  45. 45.
    Petrov A.Z. (1969). Einstein Spaces. Pergamon, OxfordMATHGoogle Scholar
  46. 46.
    S. Kopeikin, P. Korobkov, and A. Polnarev, Class. Quant. Grav. (2006) (submitted) e-print: gr-qc/0603064.Google Scholar
  47. 47.
    S. Kopeikin and P. Korobkov, Gen. Rel. Grav. (2006) submitted e-print: gr-qc/0510084.Google Scholar
  48. 48.
    Griffiths D.J. (1999). Introduction to Electrodynamics. Prentice Hall, New JerseyGoogle Scholar
  49. 49.
    O. J. Sovers and C. S. Jacobs, JPL Publication 83-39, Rev. 5, p6 (1994).Google Scholar
  50. 50.
    J. D. Barrow and J. Levin, Phys. Rev. A 63, id. 044104 (2001).Google Scholar
  51. 51.
    C. M. Will, Phys. Rev. D 67, id. 062003 (2003).Google Scholar
  52. 52.
    J. L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960).Google Scholar
  53. 53.
    T. Jacobson and D. Mattingly, Phys. Rev. D 70, id. 024003 (2004).Google Scholar
  54. 54.
    Ya. B. Zeldovich and A. D. Myskis, Elements of Mathematical Physics (Nauka, Moscow, 1973) (in Russian).Google Scholar
  55. 55.
    C. M. Will, “The Confrontation between general relativity and experiment,” Liv. Rev. Rel. 9, 3 (2006) http://relativity.livingreviews.org/Articles/Irr-2006-3 (cited on April 19, 2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Physics & AstronomyUniversity of Missouri-ColumbiaColumbiaUSA
  2. 2.National Radio Astronomy ObservatoryCharlottesvilleUSA

Personalised recommendations