Advertisement

Foundations of Physics

, Volume 36, Issue 6, pp 839–861 | Cite as

The Distance Modulus Determined from Carmeli’s Cosmology Fits the Accelerating Universe Data of the High-redshift Type Ia Supernovae Without Dark Matter

  • John G. HartnettEmail author
Article

The velocity of the Hubble expansion has been added to General Relativity by Moshe Carmeli and this resulted in new equations of motion for the expanding universe. For the first time the observational magnitude–redshift data derived from the high-z supernova teams has been analysed in the framework of the Carmeli theory and the fit to that theory is achieved without the inclusion of any dark matter. Best fits to the data yield an averaged matter density for the universe at the present epoch Ωm ≈ 0.021, which falls well within the measured values of the baryonic matter density. And the best estimate of ΩΛ+ Ωm ≈ 1.021 at the present epoch. The analysis also clearly distinguishes that the Hubble expansion of the universe is speed-limited.

Keywords

Carmeli cosmology high redshift type Ia supernovae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behar S., Carmeli M. (2000). “Cosmological relativity: A new theory of cosmology”. Int. J. Theor. Phys. 39(5): 1375–1396zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Carmeli M. (2002). Cosmological Special Relativity. World Scientific, SingaporezbMATHGoogle Scholar
  3. 3.
    Carmeli, M., “Accelerating Universe: Theory versus Experiment” [arXiv: astro-ph/0205396 v4 2 Jun 2002] (2002).Google Scholar
  4. 4.
    Carmeli M. (1998). “Is galaxy dark matter a property of spacetime?”. Int. J. Theor. Phys. 37(10): 2621–2625zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Hartnett J.G. (2005). “Carmeli’s accelerating universe is spatially flat without dark matter”. Int. J. Theor. Phys. 44(4): 485–492zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Knop R.A., Aldering G., Amanullah R., Astier P., Blanc G., Burns M.S., Conley A., Deustua S.E., Doi M., Ellis R., Fabbro S., Folatelli G., Fruchter A.S., Garavini G., Garmond S., Garton K., Gibbons R., Goldhaber G., Goobar A., Groom D.E., Hardin D., Hook I., Howell D.A., Kim A.G., Lee B.C., Lidman C., Mendez J., Nobili S., Nugent P.E., Pain R., Panagia N., Pennypacker C.R., Perlmutter S., Quimby R., Raux J., Regnault N., Ruiz-Lapuente P., Sainton G., Schaefer B., Schahmaneche K., Smith E., Spadafora A.L., Stanishev V., Sullivan M., Walton N.A., Wang L., Wood-Vasey W.M., Yasuda N. (2003). “New constraints on ΩM, ΩΛ and w from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope”. Ap. J. 598, 102–137CrossRefADSGoogle Scholar
  7. 7.
    Riess A.G., Strolger L.-G., Tonry J., Casertano S., Ferguson H.C., Mobasher B., Challis P., Filippenko A.V., Jha S., Li W., Chornock R., Kirshner R.P., Leibundgut B., Dickinson M., Livio M., Giavalisco M., Steidel C.C., Benitez T., Tsvetanov Z. (2004). “Type Ia supernovae discoveries at z >1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution”. Ap. J. 607, 665–687CrossRefADSGoogle Scholar
  8. 8.
    Tonry L.R., Schmidt B.P., Barris B., Candia P., Challis P., Clocchiatti A., Coil A.L., Filippenko A.V., Garnavich P., Hogan C., Holland S.T., Jha S., Kirshner R.P., Krisciunas K., Leibundgut B., Li W., Matheson T., Phillips M.M., Riess A.G., Schommer R., Smith R.C., Sollerman J., Spyromilio J., Stubbs C.W., Suntzeff N.B. (2003). “Cosmological results from high-z supernovae”. Ap. J. 594, 1–24CrossRefADSGoogle Scholar
  9. 9.
    Carmeli M. (1996). “Cosmological General Relativity”. Commun. Theor. Phys. 5, 159MathSciNetGoogle Scholar
  10. 10.
    Riess A.G., Filippenko A.V., Challis P., Clocchiatti A., Diercks A. (1998). “Observational evidence from supernovae for an accelerating universe and a cosmological constant”. Astron. J. 116, 1009–1038CrossRefADSGoogle Scholar
  11. 11.
    Garnavich P.M., Kirshner R.P., Challis P., Tonry J., Gilliland R.L., Smith R.C., Clocchiatti A., Diercks A., Filippenko A.V., Hamuy M., Hogan C.J., Leibundgut B., Phillips M.M., Reiss D., Riess A.G., Schmidt B.P., Spyromilio J., Stubbs C., Suntzeff N.B., Wells L. (1997). “Constraints on cosmological models from Hubble Space Telescope observations of high-z Supernovae”. Bull. Am. Astron. Soc. 29(7): 1350ADSGoogle Scholar
  12. 12.
    Perlmutter S. et al. (1997). “Cosmology from type ia supernovae: measurements, calibration techniques and implications”. Bull. Am. Astron. Soc. 29(5): 1351ADSGoogle Scholar
  13. 13.
    Krauss L.M. (1998). “The end of the age problem, and the case for a comological constant revisited”. Ap. J. 501, 461–466CrossRefADSGoogle Scholar
  14. 14.
    Ostriker J.P., Steinhardt P.J. (1995). “The observational case for a low-density Universe with a non-zero cosmological constant”. Lett. Nat. 377, 600–602Google Scholar
  15. 15.
    Fukugita M., Hogan C.J., Peebles P.J.E. (1998). “The cosmic baryon budget”. Ap. J. 503, 518–530CrossRefADSGoogle Scholar
  16. 16.
    White S.D., Navarro J.F., Evrard A.E., Frenk C.S. (1993). “The baryon content of galaxy clusters: a challenge to cosmological orthodoxy”. Nature 366, 429–433CrossRefADSGoogle Scholar
  17. 17.
    Wright A.E., Disney M.J., Thomson R.C. (1990). “Universal gravity: was Newton right?”. Proc. ASA 8(4): 334–338ADSGoogle Scholar
  18. 18.
    Hartnett J.G. (2005). “The Carmeli metric correctly describes spiral galaxy rotation curves”. Int. J. Theor. Phys. 44(3): 349–362zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Freedman W.L., Madore B.F., Mould J.R., Hill R., Ferrarese L., Kennicutt R.C. Jr, Saha A., Stetson P.B., Graham J.A., Ford H., Hoessel J.G., Huchra J., Hughes S.M., Illingworth G.D. (1994). “Distance to the Virgo cluster galaxy M100 from Hubble Space Telescope observations of Cepheids”. Nature 371, 757–762CrossRefADSGoogle Scholar
  20. 20.
    Riess A.G., Press W.H., Kirshner R.P. (1995). “Using type Ia super nova light curve shapes to measure the Huibble constant”. Ap. J. 438, L17–L20CrossRefADSGoogle Scholar
  21. 21.
    Freedman W.L., Madore B.F., Gibson B.K., Ferrarese L., Kelson D.D., Sakai S., Mould J.R., Kennicutt R.C. Jr, Ford H.C., Graham J.A., Huchra J.P., Hughes S.M.G., Illingworth G.D., Macri L.M., Stetson P.B. (2001). “Final results from the Hubble Space Telescope Key Project to measure the Hubble constant”. Ap. J. 553: 47–72CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.School of PhysicsThe University of Western AustraliaCrawleyAustralia

Personalised recommendations