Advertisement

Foundations of Physics

, Volume 36, Issue 4, pp 477–499 | Cite as

Unitarity as Preservation of Entropy and Entanglement in Quantum Systems

  • Florian Hulpke
  • Uffe V. Poulsen
  • Anna Sanpera
  • Aditi Sen(De)
  • Ujjwal Sen
  • Maciej Lewenstein
Article

Abstract

The logical structure of Quantum Mechanics (QM) and its relation to other fundamental principles of Nature has been for decades a subject of intensive research. In particular, the question whether the dynamical axiom of QM can be derived from other principles has been often considered. In this contribution, we show that unitary evolutions arise as a consequences of demanding preservation of entropy in the evolution of a single pure quantum system, and preservation of entanglement in the evolution of composite quantum systems. 6

Keywords

dynamical axiom of Quantum mechanics entanglement preservation entropy preservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987); Foundations of Quantum Mechanics since the Bell Inequalities, L. E. Ballentine, ed. (Amer. Assoc. Phys. Teachers, College Park, 1988), and references therein.Google Scholar
  2. 2.
    Einstein A., Podolsky B., Rosen N. (1935) Phys. Rev. 47, 777CrossRefzbMATHADSGoogle Scholar
  3. 3.
    Bell J.S. Physics 1, 195 (1964); J. S. Bell, Rev. Mod. Phys. 38, 447 (1966).Google Scholar
  4. 4.
    E. Santos, Phys. Rev. Lett. 66, 1388 (1991); Phys. Rev. A 46, 3646 (1992).Google Scholar
  5. 5.
    P. M. Pearle, Phys. Rev. D 2, 1418 (1970); J. F. Clauser and M. A. Horne, Phys. Rev. D 10, 526 (1974); P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, Phys. Rev. A 49, 3209 (1994); N. Gisin and B. Gisin, Phys. Lett. A 260, 323 (1999); S. Massar, S. Pironio, J. Roland, and B. Gisin, Phys. Rev. A 66, 052112 (2002); R. Garcia-Patron, J. Fiurásek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and Ph. Grangier, Phys. Rev. Lett. 93, 130409 (2004).Google Scholar
  6. 6.
    Cohen-Tannoudji C., Diu B., Laloë F. (1977). Quantum Mechanics. John Wiley, NY and Hermann, ParisGoogle Scholar
  7. 7.
    Gleason A.M. (1957). J. Math. Mech. 6, 885zbMATHMathSciNetGoogle Scholar
  8. 8.
    Kochen S., Specker E.P. (1967). J. Math. Mech. 17, 59zbMATHMathSciNetGoogle Scholar
  9. 9.
    W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982); D. Dieks, Phys. Lett. A 92, 271 (1982); H. P. Yuen, Phys. Lett. A 113, 405 (1986).Google Scholar
  10. 10.
    D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos ed. (Kluwer Academic, Dordrecht, The Netherlands, 1989).Google Scholar
  11. 11.
    Partovi M.H. (1989). Phys. Lett. A 137, 440CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Hardy L. (1993). Phys. Rev. Lett. 71: 1665CrossRefPubMedzbMATHADSMathSciNetGoogle Scholar
  13. 13.
    Olkiewicz R. (1999). Comm. Math. Phys. 208: 245CrossRefzbMATHADSMathSciNetGoogle Scholar
  14. 14.
    A. K. Pati and S. L. Braunstein, Nature 404, 131 (2000); ibid., quant-ph/0007121.Google Scholar
  15. 15.
    Olkiewicz R. (2000). Ann. Phys. 286: 10CrossRefzbMATHADSMathSciNetGoogle Scholar
  16. 16.
    L. Hardy, quant-ph/0101012.Google Scholar
  17. 17.
    Simon C., Bužek V., Gisin N. (2001). Phys. Rev. Lett. 87: 170405CrossRefPubMedADSGoogle Scholar
  18. 18.
    Ferrero M., Salgado D., Sánchez-Gómez J.L. (2004). Phys. Rev. A 70, 014101CrossRefADSGoogle Scholar
  19. 19.
    A. Sen(De) and U. Sen, quant-ph/0401186, to appear in Phys. Rev. A.Google Scholar
  20. 20.
    K. Dietz, J. Phys. A-Math. Gen. 35, 10573 (2002); ibid., 36, 5595 (2003); ibid., 36, L45 (2003).Google Scholar
  21. 21.
    Caves C.M., Fuchs C.A., Manne K., Renes J.M. (2004) Found. Phys. 34: 193 and references therein.CrossRefzbMATHADSMathSciNetGoogle Scholar
  22. 22.
    Peres A. (1995) Quantum Theory: Concepts and Methods. Kluwer, Dordrecht, p. 278.zbMATHGoogle Scholar
  23. 23.
    An antiunitary operator can be always written in the form \(U {\mathcal{C}}\), where U is a unitary operator and \({\mathcal {C}}\) is complex conjugation in the choosen basis.Google Scholar
  24. 24.
    Welsh D. (1989). Codes and Cryptography. Clarendon Press, OxfordGoogle Scholar
  25. 25.
    Wehrl A. (1978). Rev. Mod. Phys. 50, 221CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    von Neumann J. (1927). Gött. Nachr. 1: 273Google Scholar
  27. 27.
    Wigner E.P. (1959). Group Theory. Academic Press, New YorkzbMATHGoogle Scholar
  28. 28.
    Emch G., Piron C. (1963). J. Math. Phys. 4, 469CrossRefzbMATHADSMathSciNetGoogle Scholar
  29. 29.
    Gisin N. (1993). Am. J. Phys. 61, 86CrossRefADSGoogle Scholar
  30. 30.
    There are many ways in which one can quantify entanglement. A partial list includes.(31) Google Scholar
  31. 31.
    C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996); V. Vedral, M. B. Plenio, M.A. Rippin, and P. L. Knight, Phys. Rev. Lett 78, 2275 (1997); D. P. DiVincenzo, C. A. Fuchs, H. Mabuchi, J. A. Smolin, A. Thapliyal, A. Uhlmann, quant-ph/9803033; T. Laustsen, F. Verstraete, and S. J. van Enk, QIC 3, 64 (2003); M. A. Nielsen, Phys. Rev. Lett. 83, 436 (1999); G. Vidal, J. Mod. Opt. 47, 355 (2000); D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 1455 (1999); M. Horodecki, A. Sen(De), and U. Sen, Phys. Rev. A 70, 052326 (2004); M. Horodecki, QIC 1, 7 (2001).Google Scholar
  32. 32.
    C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 53, 2046 (1996); S. Popescu and D. Rohrlich, Phys. Rev. A 56, 3219 (1997); G. Vidal, J. Mod. Opt. 47, 355 (2000); M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 84, 2014 (2000).Google Scholar
  33. 33.
    Schmidt E. (1907). Math. Ann. 63, 433ffCrossRefMathSciNetGoogle Scholar
  34. 34.
    M. Horodecki, R. Horodecki, A. Sen(De), and U. Sen, quant-ph/0306044; ibid., quant-ph/0407038.Google Scholar
  35. 35.
    S. Popescu and D. Rohrlich, Phys. Rev. A 56, R3319 (1997); M. B. Plenio and V. Vedral, Cont. Phys. 39, 431 (1998); M. Horodecki and R. Horodecki, Phys. Lett. A 244, 473 (1998); P. Horodecki, M. Horodecki and R. Horodecki, Acta Phys. Slovaca 48, 141 (1998).Google Scholar
  36. 36.
    See e.g., Ref. 37, p. 73.Google Scholar
  37. 37.
    Huang K. (1987). Statistical Mechanics. Wiley, New YorkzbMATHGoogle Scholar
  38. 38.
    Note that the usual statement of the Boltzmann H theorem is with the function H(t), without the minus sign.Google Scholar
  39. 39.
    See e.g., Ref. 37, p. 62.Google Scholar
  40. 40.
    E. A. Calzetta and B. L. Hu, Phys. Rev. D 37, 2878 (1988); ibid. 68, 065027 (2003), and references therein.Google Scholar
  41. 41.
    See e.g., Ref. 37, p. 64.Google Scholar
  42. 42.
    Ref. 22, p. 267.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Florian Hulpke
    • 1
  • Uffe V. Poulsen
    • 2
  • Anna Sanpera
    • 1
    • 3
    • 5
  • Aditi Sen(De)
    • 1
    • 4
  • Ujjwal Sen
    • 1
    • 4
  • Maciej Lewenstein
    • 1
    • 4
    • 5
  1. 1.Institut für Theoretische PhysikUniversität HannoverHannoverGermany
  2. 2.Department of Physics and AstronomyUniversity of AarhusAarhus C.Denmark
  3. 3.Grup de Física TeòricaUniversitat Autònoma de BarcelonaBellaterraSpain
  4. 4.ICFO-Institut de Ciències FotòniquesBarcelonaSpain
  5. 5.Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain

Personalised recommendations