Foundations of Physics

, Volume 36, Issue 3, pp 443–463 | Cite as

Superluminal Signals and the Resolution of the Causal Paradox


The experimental evidence for electromagnetic signals propagating with superluminal group velocity is recalled. Transformations of space and time depending on a synchronization parameter, e1, indicate the existence of a privileged inertial system. The Lorentz transformations are obtained for a particular e1≠0. No standard experiment on relativity depends on e1, but if accelerations are considered only e1=0 remains possible. The causal paradox generated by superluminal signals (SLS) in the theory of relativity does not exist in the theory with e1=0. The irrelevance of SLS for the Einstein, Podolsky and Rosen paradox is pointed out.


clock synchronization superluminal signals Lorentz ether 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barut A.O.,Maccarrone G.D.,and Recami E. (1982). Nuovo Cim. A 71:509CrossRefADSGoogle Scholar
  2. 2.
    Zensus J.A., and Pearson T.J. (eds). (1987). Superluminal Radio Sources. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Arp H.C., Burbidge G., Hoyle F., Narlikar J.V., Wickramasinghe N.C. (1990). Nature 346:807CrossRefADSGoogle Scholar
  4. 4.
    Mirabel I.F., Rodriguez L.F.Nature 371, 46 (1994); Tingay S.J., et al. Nature 374, 141 (1995).Google Scholar
  5. 5.
    Enders A., and Nimtz G. (1993). Phys. Rev. E 48:632CrossRefADSGoogle Scholar
  6. 6.
    Stenberg A.M., Kwiat P.G., Chiao R.Y. (1993). Phys. Rev. Lett 71:708CrossRefPubMedADSGoogle Scholar
  7. 7.
    Ranfagni A., and Mugnai D. (1996). Phys. Rev. E 54:5692CrossRefADSGoogle Scholar
  8. 8.
    Saari P., and Reivelt K. (1997). Phys. Rev. Lett 79:4135CrossRefADSGoogle Scholar
  9. 9.
    Mugnai D., Ranfagni A., Ruggeri R. (2000). Phys. Rev. Lett 84:4830CrossRefPubMedADSGoogle Scholar
  10. 10.
    A discussion of superluminal signals is contained in a recent book: Tiwari S.C.,Superluminal Phenomena in Modern Perspective, (Rinton Press, New York, 2003).Google Scholar
  11. 11.
    Nimtz G., Haibel A. (2002). Ann. Phys (Leipzig) 11:163CrossRefGoogle Scholar
  12. 12.
    Garrison J.C., Mitchell M.W., Chiao R.Y., Bolda E.L. (2000). Phys. Lett. A 245:19CrossRefADSGoogle Scholar
  13. 13.
    Recami E., Fontana F., Garavaglia R. (2000). Int. J. Mod. Phys. A 15:2793CrossRefADSMathSciNetMATHGoogle Scholar
  14. 14.
    Selleri F. (2002). Bull de la Société des Sciences et des Lettres de Lodz LII:63MathSciNetGoogle Scholar
  15. 15.
    Poincaré H. (1898). Rev. Metaphys Morale 6:1Google Scholar
  16. 16.
    Reichenbach H. (1958). The Philosophy of Space and Time. Dover, New YorkMATHGoogle Scholar
  17. 17.
    Jammer M. (1979). “Some fundamental problems in the special theory of relativity”. In: Toraldo di Francia G (eds). Problems in The Foundations of Physics. Società Italiana di Fisica Bologna and North Holland, Amsterdam, pp. 202–236Google Scholar
  18. 18.
    Mansouri R., and Sexl R. General Relat Gravit. 8, 497, 515, 809 (1977).Google Scholar
  19. 19.
    Selleri F., Found. Physics 26, 641 (1996); Found. Phys. Lett. 9, 43 (1996).Google Scholar
  20. 20.
    Presently the two way velocity of light in vacuum is known with an error of 20 cm/s. See: Woods P.T.,Sholton K.C.,W. Rowley R.C.,Appl.Opt. 17, 1048 (1978); Jennings D.A.,Drullinger R.E.,Evenson K.M.,Pollock C.R.,J. S Wells, J. Res. Natl. Bur. Stand. 92, 11 (1987).Google Scholar
  21. 21.
    Rossi B., Hall D.B. (1941). Phys. Rev 59:223CrossRefADSGoogle Scholar
  22. 22.
    Bailey J., Borer K., Combley F., Drumm H., Krienen F., Lange F., Picasso E., von Ruden W., Farley F.J.M., Field J.H., Flegel W., Hettersley P.M. (1977). Nature 268:301CrossRefADSGoogle Scholar
  23. 23.
    Hafele J.C., Keating R.E. (1972). Science 177:166CrossRefADSGoogle Scholar
  24. 24.
    Van Flandern T. (1998). “What the global positioning system tells us about relativity”. In: Selleri F. (eds). Open Questions in Relativistic Physics. Apeiron, Montreal, pp. 81–90Google Scholar
  25. 25.
    Manaresi R., Selleri F. (2004). Found. Phys. Letters 17:65CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Selleri F. (2002). “Bell’s spaceships and special relativity”. In: Bertlmann R.A., Zeilinger A. (eds). Quantum [Un]Speakables, from Bell to Quantum Information. Springer, Berlin, pp. 413–428Google Scholar
  27. 27.
    Selleri F. (2003). Found Phys. Letters 16:71CrossRefGoogle Scholar
  28. 28.
    Selleri F. (1995). Chin. J. Syst. Eng. Electronics 6:25Google Scholar
  29. 29.
    Selleri F. (1997). Found Phys. Lett 10:73CrossRefMathSciNetGoogle Scholar
  30. 30.
    Selleri F. (2004). “Sagnac effect: end of the mystery”. In: Rizzi G., Ruggiero M.L. (eds). Relativity in Rotating Frames. Kluwer, Dordrecht, pp. 57–77Google Scholar
  31. 31.
    Langevin P., Compt. Rend. 173, 831 (1921); 205, 304 (1937).Google Scholar
  32. 32.
    Post E.J. (1967). Rev. Mod. Phys 39: 475CrossRefADSGoogle Scholar
  33. 33.
    Landau L.D., and Lifshitz E.M. The Classical Theory of Fields. (Butterworth-Heinemann, Oxford, 1996), §§ 82–87.Google Scholar
  34. 34.
    Anandan J. (1981). Phys Rev D 24:338ADSGoogle Scholar
  35. 35.
    Hasselbach F., Nicklaus M. (1993). Phys. Rev. A 48:143CrossRefPubMedADSGoogle Scholar
  36. 36.
    Puccini G.D., and Selleri F. (2002). Nuovo Cim 117 B:283ADSGoogle Scholar
  37. 37.
    Møller C. (1952). The Theory of Relativity. Oxford Press, Oxford, p. 25Google Scholar
  38. 38.
    Ives H.E. (1950). J. Opt. Soc. Am 40:185ADSCrossRefGoogle Scholar
  39. 39.
    Eisner E. (1967). Am. J. Phys 35:817CrossRefADSGoogle Scholar
  40. 40.
    Hayden H.C. (1993). Galilean Electrodyn. 4:89Google Scholar
  41. 41.
    Einstein A., “Zur elektrodynamik bewegter Körper,” Ann. der Phys. 17, 891–921 (1905). English translation: “On the electrodynamics of moving bodies,” in The Principle of Relativity, Einstein A., Lorentz H.A.,et al., (Dover, New York, 1952), pp. 37–65.Google Scholar
  42. 42.
    Einstein A. (1918). Die Naturwissensch 6:697CrossRefADSGoogle Scholar
  43. 43.
    Iorio L. (2005). Found Phys. Lett 18:1CrossRefMathSciNetMATHGoogle Scholar
  44. 44.
    Selleri F., “Space and time physics with the Lorentz ether: the clock paradox,” in Proceedings of the Sixth International Symposium Frontiers of Fundamental Physics, September 26–28, 2004 (Udine, Italy, 2005).Google Scholar
  45. 45.
    Einstein A., Podolsky B., and Rosen N. (1935). Phys. Rev 47:777CrossRefADSMATHGoogle Scholar
  46. 46.
    Bell J.S. (1965). Physics 1:195Google Scholar
  47. 47.
    Clauser J.F., Horne M.A., Shimony A., Holt R.A. (1969). Phys. Rev. Lett 23:880CrossRefADSGoogle Scholar
  48. 48.
    Freedman S.J., Clauser J.F. (1972). Phys. Rev. Lett 28:938CrossRefADSGoogle Scholar
  49. 49.
    Lepore V.L., Selleri F. (1990). Found Phys. Lett 3:203CrossRefMathSciNetGoogle Scholar
  50. 50.
    Santos E., Phys. Rev. Lett. 66, 1388 (1991); Phys. Lett. A 212, 10 (1996).Google Scholar
  51. 51.
    Santos E. (2004). Found Phys 34:1643CrossRefMathSciNetADSMATHGoogle Scholar
  52. 52.
    Afriat A., Selleri F. (1999). The Paradox of Einstein, Podolsky, and Rosen in Atomic, Nuclear, and Particle Physics. Plenum, New York/LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Dipartimento di Fisica, INFNUniversità di BariBariItaly

Personalised recommendations