Foundations of Physics

, Volume 36, Issue 3, pp 350–368 | Cite as

The Foundations of Linear Stochastic Electrodynamics



An analysis is briefly presented of the possible causes of the failure of stochastic electrodynamics (SED) when applied to systems with nonlinear forces, on the basis that the main principles of the theory are correct. In light of this analysis, an alternative approach to the theory is discussed, whose postulates allow to establish contact with quantum mechanics in a natural way. The ensuing theory, linear SED, confirms the essential role of the vacuum–particle interaction as the source of quantum phenomena.


stochastic electrodynamics zero-point field fundamentals of quantum mechanics Heisenberg equations atomic stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A large number of papers deal with the subject. References to them can be found in Refs. 2, 3 and 4.Google Scholar
  2. 2.
    T. H. Boyer, in Foundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, London, 1980).Google Scholar
  3. 3.
    L. de la Peña, in Stochastic Processes Applied to Physics and Other Related Fields, Proceedings of the Latin American School of Physics (Cali, Colombia, 1982); B. Gómez, S. M. Moore, A. M. Rodríguez-Vargas, A. Rueda, eds. (World Scientific, Singapore, 1983).Google Scholar
  4. 4.
    de la Peña L., Cetto A.M. (1996). The Quantum Dice. An Introduction to Stochastic Electrodynamics. Kluwer, DordrechtGoogle Scholar
  5. 5.
    E. Santos, Eur. Phys. J. D 22, 423 (2003) (see also quant-ph/0204020); Phys. Rev. A 69, 022305 (2004) (or quant-ph/0301171).Google Scholar
  6. 6.
    T. W. Marshall, E. Santos, and A. Vidiella-Barranco, in Proceedings of the Third International Workshop on Squeezed States and Uncertainty Relations, D. Han et al., eds. NASA Conf. Publ. Series no. 3270, 1994, p. 581; T. W. Marshall and E. Santos, Recent Res. Dev. Opt. 2, 683 (2002).Google Scholar
  7. 7.
    D. C. Cole and Y. Zou, Phys. Lett. A 317, 14 (2003); Phys. Rev. E 69, 016601 (2004); J. Sci. Comput. 21, 145 (2004) and references therein. See, comments T. H. Boyer, Found. Phys. Lett. 16, 613 (2003) and P. W. Milonni, Found. Phys. Lett. 16, 619 (2003).Google Scholar
  8. 8.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943). Reprinted in Selected Papers on Noise and Stochastic Processes , N. Wax, ed. (Dover, New York, 1954).Google Scholar
  9. 9.
    L. de la Peña, A.M. Cetto, Found. Phys. 24, 917 (1994); 25, 573 (1995).Google Scholar
  10. 10.
    L. de la Peña and A. M. Cetto, in New Perspectives on Quantum Mechanics, Proceedings of the Latin-American School of Physics, XXXI ELAF,Mexico City, July–August 1998. AIP Conf. Proc. 464 (American Institute of Physics, New York, 1999).Google Scholar
  11. 11.
    Nernst W. (1916). Verhandl. Deutsch. Phys. Ges. 18, 83 AppendixGoogle Scholar
  12. 12.
    van Vleck H., Huber D.L. (1977). Rev. Mod. Phys. 40, 939CrossRefADSGoogle Scholar
  13. 13.
    R. Blanco, L. Pesquera, and E. Santos, Phys. Rev. D 27, 1254 (1983); 29, 2240 (1984).Google Scholar
  14. 14.
    Papoulis A. (1965). Probability, Random Variables, and Stochastic Processes. McGraw-Hill, TokyoMATHGoogle Scholar
  15. 15.
    Dalibard J., Dupont-Roc J., Cohen-Tannoudji C. (1982). J. Phys. 43: 1617Google Scholar
  16. 16.
    L. de la Peña and A. M. Cetto, “Contribution from stochastic electrodynamics to the understanding of quantum mechanics,” quant-ph/0501011.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMéxicoD. F
  2. 2.International Atomic Energy AgencyViennaAustria

Personalised recommendations