Foundations of Physics

, Volume 36, Issue 2, pp 291–306

Complementarity in Classical Dynamical Systems

  • Peter beim Graben
  • Harald Atmanspacher
Article

Abstract

The concept of complementarity, originally defined for non-commuting observables of quantum systems with states of non-vanishing dispersion, is extended to classical dynamical systems with a partitioned phase space. Interpreting partitions in terms of ensembles of epistemic states (symbols) with corresponding classical observables, it is shown that such observables are complementary to each other with respect to particular partitions unless those partitions are generating. This explains why symbolic descriptions based on an ad hoc partition of an underlying phase space description should generally be expected to be incompatible. Related approaches with different background and different objectives are discussed.

Keywords

algebraic system theory complementarity dynamical systems symbolic dynamics epistemic accessibility generating partitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler R.L., Weiss B. (1967). “Entropy, a complete metric invariant for automorphisms of the torus”. Proc. Natl. Acad. Sci. U.S.A. 57, 1573–1576CrossRefADSMathSciNetMATHGoogle Scholar
  2. 2.
    Alanson T. (1992). “A ‘quantal’ Hilbert space formulation for nonlinear dynamical systems in terms of probability amplitudes”. Phys. Lett. A 163, 41–43CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Alicki R., Andries J., Fannes M., Tuyls P. (1996). “An algebraic approach to the Kolmogorov-Sinai entropy”. Rev. Math. Phys. 8(2): 167–184CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    A. E. Allahverdyan, A. Khrennikov, and Th. M. Nieuwenhuizen, “Brownian entanglement,” manuscript, arXiv: quant-ph/0412132. Phys. Rev. A, in press.Google Scholar
  5. 5.
    Antoniou I., Tasaki S. (1993). “Generalized spectral decomposition of mixing dynamical systems”. Int. J. Quant. Chem. 46, 425–474CrossRefGoogle Scholar
  6. 6.
    H. Atmanspacher and H. Primas, “Epistemic and ontic quantum realities,” in Time, Quantum, and Information, L. Castell and O. Ischebeck, eds. (Springer, Berlin, 2003), pp. 301–321.Google Scholar
  7. 7.
    Atmanspacher H., Römer H., Walach H. (2002). “Weak quantum theory: Complementarity and entanglement in physics and beyond”. Found. Phys. 32, 379–406CrossRefMathSciNetGoogle Scholar
  8. 8.
    Atmanspacher H., Scheingraber H. (1987). “A fundamental link between system theory and statistical mechanics”. Found. Phys. 17, 939–963CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    beim Graben P. (2004). “Incompatible implementations of physical symbol systems”. Mind Matter 2(2): 29–51Google Scholar
  10. 10.
    beim Graben P., Saddy J.D., Schlesewsky M., Kurths J. (2000). “Symbolic dynamics of event–related brain potentials”. Phys. Rev. E 62, 5518–5541CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Bohr N. (1932). “Chemistry and the quantum theory of atomic constitution”. J. Chem. Soc. 134, 349–384CrossRefGoogle Scholar
  12. 12.
    Bollt E.M., Stanford T., Lai Y.-C., Życzkowski K. (2000). “Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series”. Phys. Rev. Lett. 85, 3524–3527CrossRefPubMedADSGoogle Scholar
  13. 13.
    Bollt E.M., Stanford T., Lai Y.-C., Życzkowski K. (2001). “What symbolic dynamics do we get with a misplaced partition? On the validity of threshold crossings analysis of chaotic time-series”. Physica D 154, 259–286CrossRefADSMathSciNetMATHGoogle Scholar
  14. 14.
    Christiansen F., Politi A. (1995). “Generating partition of the standard map”. Phys. Rev. E 51, 3811–3814CrossRefADSGoogle Scholar
  15. 15.
    Crutchfield J.P., Packard N.H. (1983). “Symbolic dynamics of noisy chaos”. Physica D 7, 201–223CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Davidchack R.L., Lai Y.-C., Bollt E.M., Dhamala M. (2000). “Estimating generating partitions of chaotic systems by unstable periodic orbits”. Phys. Rev. E 61, 1353–1356CrossRefADSGoogle Scholar
  17. 17.
    Daw C.S., Finney C.E.A., Tracy E.R. (2003). “A review of symbolic analysis of experimental data”. Rev. Sci. Instrum. 74, 915–930CrossRefADSGoogle Scholar
  18. 18.
    Emch G. (1964). “Coarse-graining in Liouville space and master equation”. Helv. Phys. Act. 37, 532–544MathSciNetGoogle Scholar
  19. 19.
    Grassberger P., Kantz H. (1985). “Generating partitions for the dissipative Henon map”. Phys. Lett. A 113, 235–238CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Gustafson K., Misra B. (1976). “Canonical commutation relations of quantum mechanics and stochastic regularity”. Lett. Math. Phys. 1, 275–280CrossRefADSMathSciNetMATHGoogle Scholar
  21. 21.
    Haag R. (1992). Local Quantum Physics: Fields, Particles, Algebras Springer, BerlinMATHGoogle Scholar
  22. 22.
    Israeli N., Goldenfeld N. (2004). “On computational irreducibility and the predictability of complex physical systems”. Phys. Rev. Lett. 92, 074105CrossRefPubMedADSGoogle Scholar
  23. 23.
    Jauch J.M. (1964). “The problem of measurement in quantum mechanics”. Helv. Phys. Act. 37, 293–316MathSciNetMATHGoogle Scholar
  24. 24.
    Keller K., Wittfeld K. (2004). “Distances of time series components by means of symbolic dynamics”. Int. J. Bif. Chaos 14, 693–704CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Kennel M.B., Buhl M. (2003). “Estimating good discrete partitions from observed data: Symbolic false nearest neighbors”. Phys. Rev. Lett. 91, 1–4CrossRefGoogle Scholar
  26. 26.
    Koopman B.O. (1931). “Hamiltonian sytems and transformations in Hilbert space”. Proc. Natl. Acad. Sci. U.S.A. 17, 315–318CrossRefADSGoogle Scholar
  27. 27.
    Koopman B.O., von Neumann J. (1932). “Dynamical systems of continuous spectra”. Proc. Natl. Acad. Sci. U.S.A. 18, 255–262CrossRefADSGoogle Scholar
  28. 28.
    Kowalski K. (1992). “Linearization transformations for non-linear dynamical systems: Hilbert space approach”. Physica A 180, 156–170CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Lasota A., Mackey M.C. (1985). Probabilistic Properties of Deterministic Systems Cambridge University Press, CambridgeMATHGoogle Scholar
  30. 30.
    Lind D., Marcus B. (1995). An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, CambridgeMATHGoogle Scholar
  31. 31.
    McMillan B. (1953). “The basic theorems of information theory”. Ann. Math. Statist. 24, 196–219CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    Misra B. (1967). “When can hidden variables be excluded in quantum mechanics?”. Il Nuovo Cimento 47, 841–859CrossRefMATHGoogle Scholar
  33. 33.
    Misra B. (1978). “Nonequilibrium entropy, Lyapunov variables, and ergodic properties of classical systems”. Proc. Natl. Acad. Sci. U.S.A. 75, 1627–1631CrossRefADSGoogle Scholar
  34. 34.
    Primas H. (1977). “Theory reduction and non-Boolean theories”. J. Math. Biol. 4, 281–301CrossRefPubMedMathSciNetMATHGoogle Scholar
  35. 35.
    H. Primas, “Mathematical and philosophical questions in the theory of open and macroscopic quantum systems”. in Sixty-two Years of Uncertainty: Historical, Philosophical and Physics Inquries into the Foundation of Quantum Mechanics, A. I. Miller, ed. (Plenum, New York, 1990), pp. 233–257.Google Scholar
  36. 36.
    Primas H. (1998). “Emergence in exact natural sciences”. Acta Polytech. Scand. Ma-91, 83–98MathSciNetGoogle Scholar
  37. 37.
    Raggio G.A., Rieckers A. (1983). “Coherence and incompatibility in W*-algebraic quantum theory”. Int. J. Theor. Phys. 22, 267–291CrossRefMathSciNetMATHGoogle Scholar
  38. 38.
    Sakai S. (1971). C *-Algebras and W *-Algebras. Springer, BerlinGoogle Scholar
  39. 39.
    Shalizi C.R., Crutchfield J.P. (2001). “Computational mechanics: Pattern and prediction, structure and simplicity”. J. Stat. Phys. 104, 817–879CrossRefMathSciNetMATHGoogle Scholar
  40. 40.
    C. R. Shalizi and C. Moore, “What is a macrostate? Subjective observations and objective dynamics”. manuscript, arXiv: cond-mat/0303625.Google Scholar
  41. 41.
    R. W. Spekkens, “In defense of the epistemic view of quantum states: A toy theory”. manuscript, arXiv: quant-ph/0401052.Google Scholar
  42. 42.
    Steuer R., Molgedey L., Ebeling W., Jiménez-Montano M.E. (2001). “Entropy and optimal partition for data analysis”. Eur. Phys. J. B 19, 265–269CrossRefADSGoogle Scholar
  43. 43.
    Takesaki M. (1970). “Disjointness of the KMS-states of different temperatures”. Commun. Math. Phys. 17, 33–41CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Tjøstheim D. (1976). “A commutation relation for wide sense stationary processes”. SIAM J. Appl. Math. 30, 115–122CrossRefMathSciNetMATHGoogle Scholar
  45. 45.
    Walters P. (1981). Introduction to Ergodic Theory. Springer, BerlinGoogle Scholar
  46. 46.
    Westmoreland M.D., Schumacher B.W. (1993). “Non-Boolean derived logics for classical systems”. Phys. Rev. A 48, 977–985CrossRefPubMedADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Peter beim Graben
    • 1
  • Harald Atmanspacher
    • 2
    • 3
  1. 1.Institut für Linguistik and Institut für PhysikUniversität PotsdamPostdamGermany
  2. 2.Institut für Grenzgebiete der Psychologie und PsychohygieneFreiburgGermany
  3. 3.Parmenides FoundationCapoliveriItaly

Personalised recommendations