Foundations of Physics

, Volume 35, Issue 11, pp 1805–1823 | Cite as

How does the Entropy/Information Bound Work?

  • Jacob D. BekensteinEmail author


According to the universal entropy bound, the entropy (and hence information capacity) of a complete weakly self-gravitating physical system can be bounded exclusively in terms of its circumscribing radius and total gravitating energy. The bound’s correctness is supported by explicit statistical calculations of entropy, gedanken experiments involving the generalized second law, and Bousso’s covariant holographic bound. On the other hand, it is not always obvious in a particular example how the system avoids having too many states for given energy, and hence violating the bound. We analyze in detail several purported counterexamples of this type, and exhibit in each case the mechanism behind the bound’s efficacy.


Information entropy entropy bounds black holes second law generalized second law 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bekenstein, J. D. 1981Phys. Rev. D23287ADSMathSciNetGoogle Scholar
  2. 2.
    W. G. Unruh and R. M. Wald, Phys. Rev. D 25, 942 (1982); 27, 2271 (1983).Google Scholar
  3. 3.
    Bekenstein, J. D. 1982Phys. Rev. D26950CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Bekenstein, J. D. 1994Phys. Rev. D491912CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    J. D. Bekenstein, in Proceedings of the Seventh Marcel Grossmann Meeting on General Relativity, R. Ruffini and M. Keiser, eds. (World Scientific, River Edge, NJ 1996), pp. 39–58.Google Scholar
  6. 6.
    J. D. Bekenstein in Advances in the Interplay Between Quantum and Gravity Physics, V. de Sabbata, ed. (Kluwer, Dordrecht, 2001), pp. 1–26, ArXiv gr-qc/0107049.Google Scholar
  7. 7.
    Bekenstein, J. D. 1999Phys. Rev. D60124010CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    G. ’t Hooft, Dimensional reduction in quantum gravity, in Salam—festschrifft, A. Aly, J. Ellis, and S. Randjbar–Daemi, eds. (World Scientific, Singapore, 1993), ArXiv gr–qc/9310026.Google Scholar
  9. 9.
    Susskind, L. 1995J. Math. Phys.366377CrossRefADSzbMATHMathSciNetGoogle Scholar
  10. 10.
    J. D. Bekenstein, Phys. Letters B 481, 339 (2000); and in Ninth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, V. G. Gurzadyan, R. Jantzen, and R. Ruffini, eds. (World Scientific, Singapore, 2002), pp. 553–559.Google Scholar
  11. 11.
    Bousso, R. 1999J. High Energy Phys.9907004ADSMathSciNetGoogle Scholar
  12. 12.
    Bousso, R. 2002The holographic principleRev. Mod. Phys.74825874CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Bousso, R. 2003Phys. Rev. Lett.90121302CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Bousso, R., Flanagan, E. E., Marolf, D. 2003Phys. Rev. D68064001CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Flanagan, E., Marolf, D., Wald, R. M. 2000Phys. Rev. D62084035ADSMathSciNetGoogle Scholar
  16. 16.
    Bousso, R. 2001J. High Energy Phys.0104035ADSMathSciNetGoogle Scholar
  17. 17.
    E. Verlinde, “On the Holographic Principle in a Radiation Dominated Universe,” ArXiv hep-th/0008140.Google Scholar
  18. 18.
    Page, D. N. 1982Phys. Rev. D26947CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Unwin, D. 1982Phys. Rev. D26944CrossRefADSGoogle Scholar
  20. 20.
    Deutsch, D. 1982Phys. Rev. Lett.48286ADSMathSciNetGoogle Scholar
  21. 21.
    Bekenstein, J. D. 1983Phys. Rev. D272262CrossRefADSGoogle Scholar
  22. 22.
    Unruh, W. G. 1990Phys. Rev. D423596CrossRefADSGoogle Scholar
  23. 23.
    Bekenstein, J. D., Schiffer, M. 1990Phys. Rev. D423598ADSGoogle Scholar
  24. 24.
    D. N. Page, “Huge violations of Bekenstein’s entropy bound,” ArXiv gr-qc/0005111.Google Scholar
  25. 25.
    D. N. Page, “Subsystem entropy exceeding Bekenstein’s bound,” ArXiv hep-th/0007237.Google Scholar
  26. 26.
    D. N. Page, “Defining entropy bounds,” ArXiv hep-th/0007238.Google Scholar
  27. 27.
    J. D. Bekenstein, “On Page’s examples challenging the entropy bound,” ArXiv gr-qc/0006063.Google Scholar
  28. 28.
    Bousso, R. 2004J. High Energy Phys.0402025ADSMathSciNetGoogle Scholar
  29. 29.
    Wald, R. M. 2001Living Rev. in Relat.2001-6144Google Scholar
  30. 30.
    Bekenstein, J. D. 1984Phys. Rev. D301669CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Bekenstein, J. D., Guendelman, E. I. 1987Phys. Rev. D35716CrossRefADSGoogle Scholar
  32. 32.
    Jackson, J. 1962Classical ElectrodynamicsWileyNew York222227Google Scholar
  33. 33.
    I. L. Rozental, Usp. Fiz. Nauk 131, 239 (1980) [Sov. Phys. Usp. 23, 296 (1980)].Google Scholar
  34. 34.
    Schiffer, M., Bekenstein, J. D. 1989Phys. Rev. D391109CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Bekenstein, J. D., Schiffer, M. 1990Int. J. Mod. Phys. C1355MathSciNetGoogle Scholar
  36. 36.
    Derrick, G. 1964J. Math. Phys.51252CrossRefMathSciNetGoogle Scholar
  37. 37.
    Rajaraman, R. 1989Solitons and InstantonsNorth HollandAmsterdam137150Google Scholar
  38. 38.
    Callaway, D. J. E. 1988Phys. Rep.167241CrossRefADSGoogle Scholar
  39. 39.
    Bekenstein, J. D. 1982Gen. Rel. Grav.14355CrossRefADSGoogle Scholar
  40. 40.
    Brustein, R., Eichler, D., Foffa, S., Oaknin, D. H. 2002Phys. Rev. D65105013ADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Racah Institute of PhysicsThe Hebrew University of JerusalemGivat RamIsrael

Personalised recommendations