Foundations of Physics

, Volume 35, Issue 9, pp 1543–1562 | Cite as

Flat Space Gravitation

  • J. M. C. MontanusEmail author

A new description of gravitational motion will be proposed. It is part of the proper time formulation of physics as presented on the IARD 2000 conference. According to this formulation the proper time of an object is taken as its fourth coordinate. As a consequence, one obtains a circular space–time diagram where distances are measured with the Euclidean metric. The relativistic factor turns out to be of simple goniometric origin. It further follows that the Lagrangian for gravitational dynamics does not require an interpretation in terms of curvature of space–time. The flat space model for gravitational dynamics leads to the correct predictions for the bending of light, the perihelion shift of Mercury and gravitational red-shift. The new theory is free of singularities. More important, the new formulation of gravitational dynamics restores the validity of the principle of addition of potentials. One therefore can find solutions for static gravitational configurations for which it is difficult to find the solution of the corresponding Einstein equations. The method will be illustrated by means of the orbital precession for non-spherical stellar mass distributions. In case of the bipole mass distribution the agreement with the predictions of the general theory of relativity is very striking. Nevertheless, the new model is far more simple.


relativity gravitation Euclidean space–time orbital precession 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Montanus, J. M. C. 2001Found. Phys.311357CrossRefMathSciNetGoogle Scholar
  2. 2.
    Montanus, J. M. C. 1999Hadronic J.22625zbMATHMathSciNetGoogle Scholar
  3. 3.
    Montanus, J. M. C. 1993Phys. Essays.6540Google Scholar
  4. 4.
    Montanus, J. M. C. 1991Phys. Essays.4350MathSciNetGoogle Scholar
  5. 5.
    P. A. M. Dirac, General Theory of Relativity. Princeton University Press, 1996).Google Scholar
  6. 6.
    S. Weinberg, Gravitation and Cosmology (Wiley, 1972).Google Scholar
  7. 7.
    R. D’Inferno, Introducing Einstein’s Relativity (Clarendon Press, 1992), p. 190.Google Scholar
  8. 8.
    Montanus, J. M. C. 1997Phys. Essays.10666MathSciNetGoogle Scholar
  9. 9.
    J. B. Almeida, “4-Dimensional optics, an alternative to relativity”, abs/gr-qc/0107083, (2001).Google Scholar
  10. 10.
    J. B. Almeida, “Euclidean formulation of general relativity”, 0406026, (2004).Google Scholar
  11. 11.
    J. B. Almeida, “Maxwell’s equations in 4-dimensional Euclidean space”,, (2004).Google Scholar
  12. 12.
    J. B. Almeida, “K-calculus in 4-dimensional optics”, 0201002, (2002).Google Scholar
  13. 13.
    Gersten, A. 2003Found. Phys.331237CrossRefMathSciNetGoogle Scholar
  14. 14.
    R. F. J. van Linden, “Dimensions in special relativity”, http://www.rfjvanlinden171., (2004).Google Scholar
  15. 15.
    Montanus, J. M. C. 1997Phys. Essays.10116MathSciNetGoogle Scholar
  16. 16.
    Horwitz, L. P., Piron, C. 1973Helv. Phys. Acta.46316Google Scholar
  17. 17.
    Gill, T.L., Lindesay, J. 1993Int. J. Theor. Phys.322087CrossRefMathSciNetGoogle Scholar
  18. 18.
    Gill, T. L., Zachary, W. W., Lindesay, J. 1997Found. Phys. Lett.10547CrossRefMathSciNetGoogle Scholar
  19. 19.
    J. L. Synge, Relativity: The General Theory (North-Holland, 1971), p. 309.Google Scholar
  20. 20.
    Baker, W. M., Rogers, B. 1999Class .Quantum Grav161273CrossRefADSzbMATHGoogle Scholar
  21. 21.
    Montanus, J. M. C., Kalla, S. L. 2004Math. Comput. Model.40611CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Montanus, J. M. C. 1999Phys Essays.12259CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.J. M. C. MontanusAlmereThe Netherlands

Personalised recommendations