Advertisement

Foundations of Physics

, Volume 35, Issue 3, pp 449–467 | Cite as

On the Role of Density Matrices in Bohmian Mechanics

  • Detlef Dürr
  • Sheldon Goldstein
  • Roderich TumulkaEmail author
  • Nino Zanghí
Article

Abstract

It is well known that density matrices can be used in quantum mechanics to represent the information available to an observer about either a system with a random wave function (“statistical mixture”) or a system that is entangled with another system (“reduced density matrix”). We point out another role, previously unnoticed in the literature, that a density matrix can play: it can be the “conditional density matrix,” conditional on the configuration of the environment. A precise definition can be given in the context of Bohmian mechanics, whereas orthodox quantum mechanics is too vague to allow a sharp definition, except perhaps in special cases. In contrast to statistical and reduced density matrices, forming the conditional density matrix involves no averaging. In Bohmian mechanics with spin, the conditional density matrix replaces the notion of conditional wave function, as the object with the same dynamical significance as the wave function of a Bohmian system.

Keywords

Bohmian mechanics density matrix reduced statistical mixture conditional wave function spin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Bell,“De Broglie–Bohm, delayed-choice double-slit experiment, and density matrix”, Int. J. Quant. Chem.14, 155–159 1980. Reprinted in [18], p. 111.Google Scholar
  2. 2.
    J. Taylor, “Connections with Bohmian mechanics”, Ph.D. thesis (Department of Mathematics, Rutgers University, 2003)Google Scholar
  3. 3.
    D.Dürr, S.Goldstein, J.Taylor, R.Tumulka, and N.Zanghí: “Quantum Mechanics in Multiply Connected Spaces,” in preparation.Google Scholar
  4. 4.
    Bohm D., Hiley B. J. (1993). The Undivided Universe: An Ontological Interpretation of Quantum Theory .Routledge, London, .Google Scholar
  5. 5.
    D. Dürr, S. Goldstein, K. Münch-Berndl, and N. Zanghí, “Hypersurface Bohm–Dirac models”, Phys. Rev. A 60, 2729–2736 1999, quant-ph/9801070.Google Scholar
  6. 6.
    T. Norsen and R. Tumulka,“A Model of Photon Trajectories”, in preparation.Google Scholar
  7. 7.
    D. Dürr, S. Goldstein, R. Tumulka, and N.Zanghí, “Quantum Hamiltonians and Stochastic Jumps”,Commun. Math. Phys. (2005), to appear. quant-ph/0303056.Google Scholar
  8. 8.
    Dürr, D., Goldstein, S., Tumulka, R., Zanghí, N. 2004“Bohmian Mechanics and Quantum Field Theory”. PhysRev. Left93090402Google Scholar
  9. 9.
    J. S. Bell, “Beables for quantum field theory”, Phys. Rep. 137, 49–54 1986. Reprinted in [18], p.173.Google Scholar
  10. 10.
    Dürr, D., Goldstein, S., Tumulka, R., Zanghí, N. 2003“Trajectories and particle creation and annihilation in quantum field theory”J. Phys. A: Math. Gen.364149quant-ph/0208072Google Scholar
  11. 11.
    J. von Neumann,“Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik”,Göttinger Nachrichten 1(10), 245–272 1927. Reprinted in John von Neumann: Collected Works Vol. I, A. H. Taub, ed.(Pergamon Press, Oxford, 1961).Google Scholar
  12. 12.
    Berndl, K., Daumer, M., Dürr, D., Goldstein, S., Zanghí, N. 1995survey of Bohmian mechanics”Il Nuovo Cimento.110B737750Google Scholar
  13. 13.
    Dürr, D., Goldstein, S., Zanghí, N. 2004. “Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory”J. Stat. Phys1169591055Google Scholar
  14. 14.
    Davies, E.B. 1976Quantum Theory of Open SystemsAcademic PressLondon/New York/San FranciscoGoogle Scholar
  15. 15.
    J. vonNeumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955). Translation of Mathematische Grundlagen der Quantenmechanik (Springer-Verlag, Berlin, 1932).Google Scholar
  16. 16.
    Landau, L. 1927Dä;mpfungsproblem in der Wellenmechanik”Z. Physik45430441Google Scholar
  17. 17.
    Dürr, D., Goldstein, S., Zanghí, N. 1992“Quantum equilibrium and the origin of absolute uncertainty”J. Statist. Phys.67843907quant-ph/0308039Google Scholar
  18. 18.
    Bell, S.J. 1987Speakable and Unspeakable in Quantum MechanicsCambridge University PressCambridgeGoogle Scholar
  19. 19.
    D. Bohm,“A suggested interpretation of the quantum theory in terms of “hidden” variables, I”, Phys. Rev. 85,166–179 1952. D.Bohm: “A suggested interpretation of the quantum theory in terms of “hidden” variables, II”,Phys. Rev. 85,180–193 1952.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Detlef Dürr
    • 1
  • Sheldon Goldstein
    • 2
  • Roderich Tumulka
    • 3
    Email author
  • Nino Zanghí
    • 3
  1. 1.Mathematisches Institut der Universität MünchenMünchenGermany
  2. 2.Departments of Mathematics, Physics, and Philosophy Hill Center, RutgersThe State University of New JerseyPiscatawayUSA
  3. 3.Dipartimento di Fisica and INFN sezione di GenovaUniversitá di GenovaGenovaItaly

Personalised recommendations