Advertisement

Fuzzy Optimization and Decision Making

, Volume 6, Issue 2, pp 109–121 | Cite as

Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making

  • Zeshui Xu
Article

Abstract

Atanassov (1986) defined the notion of intuitionistic fuzzy set, which is a generalization of the notion of Zadeh’ fuzzy set. In this paper, we first develop some similarity measures of intuitionistic fuzzy sets. Then, we define the notions of positive ideal intuitionistic fuzzy set and negative ideal intuitionistic fuzzy set. Finally, we apply the similarity measures to multiple attribute decision making under intuitionistic fuzzy environment.

Keywords

Intuitionistic fuzzy set Positive ideal intuitionistic fuzzy set Negative ideal intuitionistic fuzzy set Similarity measure Multiple attribute decision making 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atanassov K. (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20: 87–96MathSciNetCrossRefzbMATHGoogle Scholar
  2. Atanassov K. (1989a). More on intuitionistic fuzzy sets. Fuzzy Sets and Systems 33: 37–46MathSciNetCrossRefzbMATHGoogle Scholar
  3. Atanassov K. (1989b). Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 31: 343–349MathSciNetCrossRefzbMATHGoogle Scholar
  4. Atanassov K. (1994a). New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems 61: 137–142MathSciNetCrossRefzbMATHGoogle Scholar
  5. Atanassov K. (1994b). Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 64: 159–174MathSciNetCrossRefzbMATHGoogle Scholar
  6. Atanassov K. (1999). Intuitionistic fuzzy sets: theory and applications. Physica-Verlag, HeidelbergCrossRefzbMATHGoogle Scholar
  7. Atanassov K. (2000). Two theorems for intuitionistic fuzzy sets. Fuzzy Sets and Systems 110: 267–269MathSciNetCrossRefzbMATHGoogle Scholar
  8. Atanassov K., Georgiev C. (1993). Intuitionistic fuzzy prolog. Fuzzy Sets and Systems 53: 121–128MathSciNetCrossRefzbMATHGoogle Scholar
  9. Atanassov K., Pasi G., Yager R.R. (2005). Intuitionistic fuzzy interpretations of multi-criteria multi- person and multi-measurement tool decision making. International Journal of Systems Science 36: 859–868MathSciNetCrossRefzbMATHGoogle Scholar
  10. Bustine H., Burillo P. (1996). Vague sets are intuitionistic fuzzy sets. Fuzzy Sets and Systems 79: 403–405MathSciNetCrossRefzbMATHGoogle Scholar
  11. Bustince H., Kacprzyk J., Mohedano V. (2000). Intuitionistic fuzzy generators: Application to intuitionistic fuzzy complementation. Fuzzy Sets and Systems 114: 485–504MathSciNetCrossRefzbMATHGoogle Scholar
  12. Chen S.M. (1988). A new approach to handling fuzzy decisionmaking problems. IEEE Transactions on Systems, Man, and Cybernetics-18: 1012–1016CrossRefzbMATHGoogle Scholar
  13. Chen S.M., Yeh S.M., Hsiao P.H. (1995). A comparison of similarity measures of fuzzy values. Fuzzy Sets and Systems 72: 79–89MathSciNetCrossRefGoogle Scholar
  14. Chen S.M., Tan J.M. (1994) Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems 67: 163–172MathSciNetCrossRefzbMATHGoogle Scholar
  15. De S.K., Biswas R., Roy A.R. (2000). Some operations on intuitionistic fuzzy sets. Fuzzy Sets and Systems 114: 477–484MathSciNetCrossRefzbMATHGoogle Scholar
  16. De, S.K., Biswas, R., Roy, A.R. 2001An application of intuitionistic fuzzy sets in medical diagnosisFuzzy Sets and Systems117209213CrossRefzbMATHGoogle Scholar
  17. Deschrijver G., Kerre E. (2003). On the composition of intuitionistic fuzzy relations. Fuzzy Sets and Systems 136: 333–361MathSciNetCrossRefzbMATHGoogle Scholar
  18. Gau W.L., Buehrer D.J. (1993). Vague Sets. IEEE Transactions on Systems, Man, and Cybernetics 23: 610–614CrossRefzbMATHGoogle Scholar
  19. Grzegorzewski P. (2004). Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric. Fuzzy Sets and Systems 148: 319–328MathSciNetCrossRefzbMATHGoogle Scholar
  20. Hong D.H., Choi C.H. (2000). Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems 114: 103–113CrossRefzbMATHGoogle Scholar
  21. Hung D.H., Hwang S.Y. (1994). A note on the value similarity of fuzzy systems variables. Fuzzy Sets and Systems 66: 383–386MathSciNetCrossRefzbMATHGoogle Scholar
  22. Hyung L.K., Song Y.S., Lee K.M. (1994). Similarity measure between fuzzy sets and between elements. Fuzzy Sets and Systems 62: 291–293MathSciNetCrossRefGoogle Scholar
  23. Kacprzyk J. (1997). Multistage fuzzy control. Chichester: WileyzbMATHGoogle Scholar
  24. Kaufmann A. (1973). Introduction a La Theorie Des Sous-ensembles Flous. Editeurs: Masson et Cie.zbMATHGoogle Scholar
  25. Liu X. (1992). Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets and Systems 52: 305–318MathSciNetCrossRefzbMATHGoogle Scholar
  26. Mondal T.K., Samanta S.K. (2001). Topology of interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 119: 483–494MathSciNetCrossRefzbMATHGoogle Scholar
  27. Mondal T.K., Samanta S.K. (2002). On intuitionistic gradation of openness. Fuzzy Sets and Systems 131: 323–336MathSciNetCrossRefzbMATHGoogle Scholar
  28. Pappis C.P., Karacapilidis N.I. (1993). A comparative assessment of measures of similarity of fuzzy values. Fuzzy Sets and Systems 56: 171–174MathSciNetCrossRefzbMATHGoogle Scholar
  29. Sanchez E. (1976). Resolution of composition fuzzy relation equations. Information and Control 30: 38–48MathSciNetCrossRefzbMATHGoogle Scholar
  30. Szmidt E., Kacprzyk J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114: 505–518MathSciNetCrossRefzbMATHGoogle Scholar
  31. Szmidt E., Kacprzyk J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems 118: 467–477MathSciNetCrossRefzbMATHGoogle Scholar
  32. Szmidt E., Kacprzyk J. (2002). Using intuitionistic fuzzy sets in group decision making. Control and Cybernetics 31: 1037–1053zbMATHGoogle Scholar
  33. Sudkamp T. (1993). Similarity, interpolation and fuzzy rule construction. Fuzzy Sets and Systems 58: 73–86MathSciNetCrossRefGoogle Scholar
  34. Wang W.J. (1997). New similarity measures on fuzzy sets and elements. Fuzzy Sets and Systems 85: 305–309MathSciNetCrossRefzbMATHGoogle Scholar
  35. Xu Z.S., Ronald R.R. (2006). Some geometric aggregation operators based on intuitionistic fuzzy sets. International Journal of General Systems 35: 417–433MathSciNetCrossRefzbMATHGoogle Scholar
  36. Yoon K. (1989). The propagation of errors in multiple-attribute decision analysis: A practical approach. Journal of Operational Research Society 40: 681–686MathSciNetCrossRefGoogle Scholar
  37. Zadeh L.A. (1965). Fuzzy Sets. Information and Control 8: 338–353MathSciNetCrossRefzbMATHGoogle Scholar
  38. Zwick R., Carlstein E., Budescu D.V. (1987) Measures of similarity among fuzzy concepts: A comparative analysis. International Journal of Approximate Reasoning 1: 221–242MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Management Science and Engineering, School of Economics and ManagementTsinghua UniversityBeijingChina

Personalised recommendations