Fuzzy Optimization and Decision Making

, Volume 6, Issue 2, pp 109–121 | Cite as

Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making

Article

Abstract

Atanassov (1986) defined the notion of intuitionistic fuzzy set, which is a generalization of the notion of Zadeh’ fuzzy set. In this paper, we first develop some similarity measures of intuitionistic fuzzy sets. Then, we define the notions of positive ideal intuitionistic fuzzy set and negative ideal intuitionistic fuzzy set. Finally, we apply the similarity measures to multiple attribute decision making under intuitionistic fuzzy environment.

Keywords

Intuitionistic fuzzy set Positive ideal intuitionistic fuzzy set Negative ideal intuitionistic fuzzy set Similarity measure Multiple attribute decision making 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atanassov K. (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20: 87–96MathSciNetMATHCrossRefGoogle Scholar
  2. Atanassov K. (1989a). More on intuitionistic fuzzy sets. Fuzzy Sets and Systems 33: 37–46MathSciNetMATHCrossRefGoogle Scholar
  3. Atanassov K. (1989b). Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 31: 343–349MathSciNetMATHCrossRefGoogle Scholar
  4. Atanassov K. (1994a). New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems 61: 137–142MathSciNetMATHCrossRefGoogle Scholar
  5. Atanassov K. (1994b). Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 64: 159–174MathSciNetMATHCrossRefGoogle Scholar
  6. Atanassov K. (1999). Intuitionistic fuzzy sets: theory and applications. Physica-Verlag, HeidelbergMATHGoogle Scholar
  7. Atanassov K. (2000). Two theorems for intuitionistic fuzzy sets. Fuzzy Sets and Systems 110: 267–269MathSciNetMATHCrossRefGoogle Scholar
  8. Atanassov K., Georgiev C. (1993). Intuitionistic fuzzy prolog. Fuzzy Sets and Systems 53: 121–128MathSciNetMATHCrossRefGoogle Scholar
  9. Atanassov K., Pasi G., Yager R.R. (2005). Intuitionistic fuzzy interpretations of multi-criteria multi- person and multi-measurement tool decision making. International Journal of Systems Science 36: 859–868MathSciNetMATHCrossRefGoogle Scholar
  10. Bustine H., Burillo P. (1996). Vague sets are intuitionistic fuzzy sets. Fuzzy Sets and Systems 79: 403–405MathSciNetCrossRefGoogle Scholar
  11. Bustince H., Kacprzyk J., Mohedano V. (2000). Intuitionistic fuzzy generators: Application to intuitionistic fuzzy complementation. Fuzzy Sets and Systems 114: 485–504MathSciNetMATHCrossRefGoogle Scholar
  12. Chen S.M. (1988). A new approach to handling fuzzy decisionmaking problems. IEEE Transactions on Systems, Man, and Cybernetics-18: 1012–1016MATHCrossRefGoogle Scholar
  13. Chen S.M., Yeh S.M., Hsiao P.H. (1995). A comparison of similarity measures of fuzzy values. Fuzzy Sets and Systems 72: 79–89MathSciNetCrossRefGoogle Scholar
  14. Chen S.M., Tan J.M. (1994) Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems 67: 163–172MathSciNetMATHCrossRefGoogle Scholar
  15. De S.K., Biswas R., Roy A.R. (2000). Some operations on intuitionistic fuzzy sets. Fuzzy Sets and Systems 114: 477–484MathSciNetMATHCrossRefGoogle Scholar
  16. De, S.K., Biswas, R., Roy, A.R. 2001An application of intuitionistic fuzzy sets in medical diagnosisFuzzy Sets and Systems117209213MathSciNetMATHCrossRefGoogle Scholar
  17. Deschrijver G., Kerre E. (2003). On the composition of intuitionistic fuzzy relations. Fuzzy Sets and Systems 136: 333–361MathSciNetMATHCrossRefGoogle Scholar
  18. Gau W.L., Buehrer D.J. (1993). Vague Sets. IEEE Transactions on Systems, Man, and Cybernetics 23: 610–614MATHCrossRefGoogle Scholar
  19. Grzegorzewski P. (2004). Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric. Fuzzy Sets and Systems 148: 319–328MathSciNetMATHCrossRefGoogle Scholar
  20. Hong D.H., Choi C.H. (2000). Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems 114: 103–113MATHCrossRefGoogle Scholar
  21. Hung D.H., Hwang S.Y. (1994). A note on the value similarity of fuzzy systems variables. Fuzzy Sets and Systems 66: 383–386MathSciNetCrossRefGoogle Scholar
  22. Hyung L.K., Song Y.S., Lee K.M. (1994). Similarity measure between fuzzy sets and between elements. Fuzzy Sets and Systems 62: 291–293MathSciNetCrossRefGoogle Scholar
  23. Kacprzyk J. (1997). Multistage fuzzy control. Chichester: WileyMATHGoogle Scholar
  24. Kaufmann A. (1973). Introduction a La Theorie Des Sous-ensembles Flous. Editeurs: Masson et Cie.MATHGoogle Scholar
  25. Liu X. (1992). Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets and Systems 52: 305–318MathSciNetMATHCrossRefGoogle Scholar
  26. Mondal T.K., Samanta S.K. (2001). Topology of interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 119: 483–494MathSciNetMATHCrossRefGoogle Scholar
  27. Mondal T.K., Samanta S.K. (2002). On intuitionistic gradation of openness. Fuzzy Sets and Systems 131: 323–336MathSciNetMATHCrossRefGoogle Scholar
  28. Pappis C.P., Karacapilidis N.I. (1993). A comparative assessment of measures of similarity of fuzzy values. Fuzzy Sets and Systems 56: 171–174MathSciNetMATHCrossRefGoogle Scholar
  29. Sanchez E. (1976). Resolution of composition fuzzy relation equations. Information and Control 30: 38–48MathSciNetMATHCrossRefGoogle Scholar
  30. Szmidt E., Kacprzyk J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114: 505–518MathSciNetMATHCrossRefGoogle Scholar
  31. Szmidt E., Kacprzyk J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems 118: 467–477MathSciNetMATHCrossRefGoogle Scholar
  32. Szmidt E., Kacprzyk J. (2002). Using intuitionistic fuzzy sets in group decision making. Control and Cybernetics 31: 1037–1053MATHGoogle Scholar
  33. Sudkamp T. (1993). Similarity, interpolation and fuzzy rule construction. Fuzzy Sets and Systems 58: 73–86MathSciNetCrossRefGoogle Scholar
  34. Wang W.J. (1997). New similarity measures on fuzzy sets and elements. Fuzzy Sets and Systems 85: 305–309MathSciNetMATHCrossRefGoogle Scholar
  35. Xu Z.S., Ronald R.R. (2006). Some geometric aggregation operators based on intuitionistic fuzzy sets. International Journal of General Systems 35: 417–433MathSciNetMATHCrossRefGoogle Scholar
  36. Yoon K. (1989). The propagation of errors in multiple-attribute decision analysis: A practical approach. Journal of Operational Research Society 40: 681–686Google Scholar
  37. Zadeh L.A. (1965). Fuzzy Sets. Information and Control 8: 338–353MathSciNetMATHCrossRefGoogle Scholar
  38. Zwick R., Carlstein E., Budescu D.V. (1987) Measures of similarity among fuzzy concepts: A comparative analysis. International Journal of Approximate Reasoning 1: 221–242MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Management Science and Engineering, School of Economics and ManagementTsinghua UniversityBeijingChina

Personalised recommendations