Fuzzy Optimization and Decision Making

, Volume 5, Issue 4, pp 371–386 | Cite as

Linguistic group decision-making: opinion aggregation and measures of consensus

  • D. Ben-Arieh
  • Z. Chen


Group decision-making is a crucial activity, necessary in many aspects of our civilization. In many cases, due to inherent complexity, experts cannot express their opinion or preferences using exact numbers, thus resorting to a qualitative preference such as linguistic labels. Another complicating factor is the fact that very seldom all individuals in a group share the same opinion about the alternatives. This creates the need to aggregate all the differing individual opinions into a group opinion. Moreover, it is desirable to be able to assess the level of agreement among the experts; termed consensus. This paper presents a methodology for aggregating experts’ judgements, presented as linguistic labels, into a group opinion with a measure of the group consensus. The aggregation model allows weighted experts to express a degree of optimism or upward bias in their opinions. Then the paper presents two models of calculating the consensus based on the individual expert opinions and the group aggregated opinion.


Fuzzy opinion Optimistic pessimistic Direct aggregation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baas, S. M., Kwakernaak, H. 1977Rating and ranking of multiple-aspect alternatives using fuzzy setsAutomatica134758zbMATHMathSciNetCrossRefGoogle Scholar
  2. Ben-Arieh, D., Chen, Z. 2006On linguistic labels aggregation and consensus measure for autocratic decision-making using group recommendationsIEEE Transactions on Systems, Man and Cybernetics, Part A36558568CrossRefGoogle Scholar
  3. Bezdek, J., Spillman, B., Spillman, R. 1978A fuzzy relation for group decision theoryFuzzy Sets and Systems1255268zbMATHMathSciNetCrossRefGoogle Scholar
  4. Bordogna, G., Fedrizzi, M., Pasi, G. 1997Linguistic modeling of consensus in group decision making based on OWA operatorsIEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans27126133CrossRefGoogle Scholar
  5. Bozdag, C.E., Kahraman, C., Ruan, D. 2003Fuzzy group decision making for selection among computer integrated manufacturing systemsComputers in Industry511329CrossRefGoogle Scholar
  6. Chen S., Hwang, C.L. (1992). Fuzzy multiple attribute decision-making. Springer-VerlagGoogle Scholar
  7. Cheng, C. -H. (1999). A simple fuzzy group decision making method. IEEE International Conference on Fuzzy Systems, 2, II-910–II-915.Google Scholar
  8. Cheng, S. C., Goetzinger, A. A., Malik, D. S., & Mordeson, J. N. (2000). Consensus of group decisions applied to bone mineral density. Annual Conference of the North American Fuzzy Information Processing Society – NAFIPS (pp. 206–210).Google Scholar
  9. Delgado, M., Verdegay, J.L., Vila, M.A. 1993On aggregation operations of linguistic labelsInternational Journal of Intelligent Systems8351370zbMATHGoogle Scholar
  10. Delgado, M., Verdegay, J.L., Vila, M.A. 1994Model for linguistic partial information in decision-making problemsInternational Journal of intelligent Systems9365378zbMATHGoogle Scholar
  11. Ephrati, E., & Rosenschein, J. S. (1994). Multi-agent planning as search for a consensus that maximizes social welfare (pp. 207–226). Lecture Notes in Artificial Intelligence 830. Springer-Verlag.Google Scholar
  12. Fedrizzi, M. (1990). On a consensus measure in a group MCDM problem, multiperson decision making models using fuzzy sets and possibility theory. (pp. 231–241). Dordrecht, Boston: Kluwer Academic Publishers.Google Scholar
  13. Fedrizzi M., Fedrizzi M., Pereira R. A. M., & Zorat A. (1995). Dynamical model for reaching consensus in group decision making. Proceedings of the ACM Symposium on Applied Computing (pp. 493–496).Google Scholar
  14. Geldermann, J., Spengler, T., Rentz, O. 2000Fuzzy outranking for environmental assessment, Case study: Iron and steel making industryFuzzy Sets and Systems1154565zbMATHCrossRefGoogle Scholar
  15. Herrera, F., Herrera-Viedma, E. 1997Aggregation operators for linguistic weighted informationIEEE Transactions on Systems Man, and Cybernetics Part A: Systems and Humans27646656CrossRefGoogle Scholar
  16. Herrera, F., Herrera-Viedma, E. 2000Linguistic decision analysis: Steps for solving decision problems under linguistic informationFuzzy Sets and Systems1156782zbMATHMathSciNetCrossRefGoogle Scholar
  17. Herrera, F., Herrera-Viedma, E., Verdegay, J.L. 1996Direct approach processes in group decision making using linguistic OWA operatorsFuzzy Sets and Systems79175190zbMATHMathSciNetCrossRefGoogle Scholar
  18. Herrera, F., Herrera-Viedma, E., Verdegay, J.L. 1997Rational consensus model in group decision making using linguistic assessmentsFuzzy Sets and Systems883149MathSciNetCrossRefGoogle Scholar
  19. Herrera-Viedma, E., Herrera, F., Chiclana, F. 2002A consensus model for multiperson decision making with different preference structuresSystems, Man and Cybernetics, Part A, IEEE Transactions on32394402CrossRefGoogle Scholar
  20. Hsu, H.M., Chen, C.T. 1996Aggregation of fuzzy opinions under group decision makingFuzzy Sets and Systems79279285MathSciNetCrossRefGoogle Scholar
  21. Iggland, B. (1991). Coupling of customer preferences and production cost information. Technology Management: The New International Language, 27–31, 250–253.Google Scholar
  22. Ishikawa, A. 1993The new fuzzy Delphi methods: Economization of GDS (group decision support), system sciences, 1993Proceeding of the Twenty-Sixth Hawaii International Conference on4255264Google Scholar
  23. Kacprzyk, J., Fedrizzi, M., Nurmi, H. 1993Group decision making with fuzzy majorities represented by linguistic quantifiersDubois, D.Prade, H.Yager, R. R. eds. Readings in fuzzy sets for intelligent systemsMorgan KaufmannLos Altos, CAGoogle Scholar
  24. Kickert, W. J. M. (1978). Fuzzy theories on decision-making: A critical review. Leiden; Boston: Martinus Nijhoff Social Sciences Division; Hingham, Mass.: sole distributors for North America, Kluwer Boston.Google Scholar
  25. Lee, H.-S. 2002Optimal consensus of fuzzy opinions under group decision making environmentFuzzy Sets and Systems132303315zbMATHMathSciNetCrossRefGoogle Scholar
  26. Marimin, M.U., Itsuo, H., Hiroyuki, T. 1998Linguistic labels for expressing fuzzy preference relations in fuzzy group decision makingIEEE Transactions On Systems, Man, and Cybernetics – Part B28205218CrossRefGoogle Scholar
  27. Montero, F.J., Tejada, J. 1986Some problems in the definition of fuzzy preference relationsFuzzy Sets and Systems6249259MathSciNetGoogle Scholar
  28. Ness, J., Hoffman, C. (1998). Putting sense into consensus: Solving the puzzle of making team decisions. Tacoma, Wash.: VISTA Associates.Google Scholar
  29. Ng, K. -C., Abramson, B. 1992Consensus diagnosis: a simulation studySystems, Man and Cybernetics, IEEE Transactions on2916928CrossRefGoogle Scholar
  30. Nurmi, H. 1981Approaches to collective decision-making with fuzzy preference relationsFuzzy Sets and Systems6249259zbMATHMathSciNetCrossRefGoogle Scholar
  31. Prodanovic, P., Simonovic, S.P. 2003Fuzzy compromise programming for Group decision makingSystems, Man and Cybernetics, Part A, IEEE Transactions on33358365CrossRefGoogle Scholar
  32. Shamsuzzaman, M., Sharif Ullah, A.M.M., Bohez Erik, L.J. 2003Applying linguistic criteria in FMS selection: fuzzy-set-AHP approachIntegrated Manufacturing Systems14247254CrossRefGoogle Scholar
  33. Spillman, B., Spillman, R., Bezdek, J. 1980A fuzzy analysis of consensus in small groupsWang, P. P.Chang, S. K. eds. Fuzzy Sets Theory and Applications to Policy, Analysis and Information SystemsNew YorkPlenum291308Google Scholar
  34. Tanino, T. 1984Fuzzy preference orderings in group decision makingFuzzy Sets and Systems12117131zbMATHMathSciNetCrossRefGoogle Scholar
  35. Tanino, T. (1988). Fuzzy preference relations in group decision making. In J. Kacprzyk, & M. Roubens (Eds.), non-connected preference relations in decision making, (pp. 54–71). Springer-Verlag.Google Scholar
  36. Wang, R.-C, Chuu, S.-J. 2002Group decision making using a fuzzy linguistic approach for evaluating the flexibility in a manufacturing systemEuropean Journal of Operational Research154563572CrossRefGoogle Scholar
  37. Yager, R.R. 1988On ordered weighted averaging aggregation operators in multicriteria decision makingIEEE Transactions System, Man, Cybernetics A18183190zbMATHMathSciNetCrossRefGoogle Scholar
  38. Yager, R.R. 1993Families of OWA operatorsFuzzy Sets and Systems59125148zbMATHMathSciNetCrossRefGoogle Scholar
  39. Yager, R.R. 1993Non-numeric multi-criteria multi-person decision makingGroup Decision and Negotiation28193CrossRefGoogle Scholar
  40. Yager, R.R. 2003Induced aggregation operatorsFuzzy Sets and Systems1375969zbMATHMathSciNetCrossRefGoogle Scholar
  41. Zadeh, L.A. 1975Fuzzy sets and their applications to cognitive and decision processesAcademic PressNew YorkzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Dept. of Industrial and Manufacturing Systems Eng.Kansas State UniversityManhattanUSA

Personalised recommendations