Classicality First: Why Zurek’s Existential Interpretation of Quantum Mechanics Implies Copenhagen

  • Javier Sánchez-CañizaresEmail author


Most interpretations of Quantum Mechanics alternative to Copenhagen interpretation try to avoid the dualistic flavor of the latter. One of the basic goals of the former is to avoid the ad hoc introduction of observers and observations as an inevitable presupposition of physics. Non-Copenhagen interpretations usually trust in decoherence as a necessary mechanism to obtain a well-defined, observer-free transition from a unitary quantum description of the universe to classicality. Even though decoherence does not solve the problem of the definite outcomes, it helps to explain why we do not observe superpositions and, according to Zurek’s existential interpretation, why a specific preferred basis emerges through system–environment interactions. The aim of this paper is to show why such interpretation ends up begging the question and provides little progress in understanding the quantum-to-classical transition; the ultimate reason being that preferred bases always correlate to human observation. Benefitting from the technical discussion, some remarks will be offered in the last section regarding the role of classical observations as a necessary condition to make workable the formalism of Quantum Mechanics and scientific activity itself.


Classicality Zurek’s existential interpretation Copenhagen interpretation Preferred basis Predictive sieve Quantum-to-classical transition 


  1. Bacciagaluppi, G. (2016). The role of decoherence in quantum mechanics. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy. Accessed 5 Sept 2018.
  2. Barnum, H., Knill, E., Ortiz, G., Somma, R., & Viola, L. (2004). A subsystem-independent generalization of entanglement. Physical Review Letters, 92, 107902.CrossRefGoogle Scholar
  3. Barnum, H., Knill, E., Ortiz, G., & Viola, L. (2003). Generalizations of entanglement based on coherent states and convex sets. Physical Review A, 68, 032308.CrossRefGoogle Scholar
  4. Bokulich, A. (2014). Bohr’s correspondence principle. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy. Accessed 5 Sept 2018.
  5. Ceroni, M., & Prosperi, G. M. (2018). Free will, subjectivity and the physics of the nervous system. Open Journal of Philosophy, 8, 317–341.CrossRefGoogle Scholar
  6. Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2(3), 200–219.Google Scholar
  7. Dennett, D. C. (1991). Real patterns. Journal of Philosophy, 87, 27–51.CrossRefGoogle Scholar
  8. Dewar, R. C., Lineweaver, C. H., Niven, R. K., & Regenauer-Lieb, K. (2014). Beyond the second law: An overview. In R. C. Dewar, C. H. Lineweaver, R. K. Niven, & K. Regenauer-Lieb (Eds.), Beyond the second law. Entropy production and non-equilibrium systems (pp. 15–27). Berlin: Springer.Google Scholar
  9. Durt, T. (2010). Anthropomorphic quantum Darwinism as an explanation for classicality. Foundations of Science, 15(2), 177–197.CrossRefGoogle Scholar
  10. Earman, J. (2015). Some puzzles and unresolved issues about quantum entanglement. Erkenntnis, 80, 303–337.CrossRefGoogle Scholar
  11. Faye, J. (2014). Copenhagen interpretation of quantum mechanics. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy. Accessed 5 Sept 2018.
  12. Fields, C. (2013). On the Ollivier–Poulin–Zurek Definition of objectivity. Axiomathes, 24, 137–156.CrossRefGoogle Scholar
  13. Fortin, S., & Lombardi, O. (2017). A top-down view of the classical limit of quantum mechanics. In R. E. Kastner, J. Jeknić-Dugić, & G. Jaroszkiewicz (Eds.), Quantum structural studies (pp. 435–468). Europe: World Scientific.CrossRefGoogle Scholar
  14. Hameroff, S., & Penrose, R. (2014). Consciousness in the universe: A review of the ‘Orch OR’ theory. Physics of Life Reviews, 11(1), 39–78.CrossRefGoogle Scholar
  15. Harshman, N., & Ranade, K. (2011). Observables can be tailored to change the entanglement of any pure state. Physical Review A, 84, 012303.CrossRefGoogle Scholar
  16. Heisenberg, W. (1958). Physics and philosophy. The revolution in modern science. London: Unwin University Books.Google Scholar
  17. Landsman, N. P. (2007). Between classical and quantum. In J. Butterfield & J. Earman (Eds.), Handbook of the philosophy of science: Philosophy of physics (pp. 417–553). Amsterdam: Elsevier.Google Scholar
  18. Lombardi, O., Fortín, S., & Castagnino, M. (2012). The problem of identifying the system and the environment in the phenomenon of decoherence. In H. W. de Regt, S. Hartmann, & S. Okasha (Eds.), The european philosophy of science association proceedings: Amsterdam 2009 (pp. 161–174). Berlin: Springer.CrossRefGoogle Scholar
  19. Paty, M. (2000). The quantum and classical domains as provisional parallel coexistents. Synthese, 125, 179–200.CrossRefGoogle Scholar
  20. Penrose, R. (2004). The road to reality. A complete guide to the laws of the universe. London: Jonathan Cape.Google Scholar
  21. Riedel, C. J., Zurek, W. H., & Zwolak, M. (2012). The rise and fall of redundancy in decoherence and quantum Darwinism. New Journal of Physics, 14, 083010.CrossRefGoogle Scholar
  22. Sánchez-Cañizares, J. (2014). The mind-brain problem and the measurement paradox of quantum mechanics: Should we disentangle them? NeuroQuantology, 12(1), 76–95.Google Scholar
  23. Schlosshauer, M. (2007). Decoherence and the quantum-to-classical transition. Heidelberg: Springer.Google Scholar
  24. Tanona, S. (2004). Idealization and formalism in Bohr’s approach to quantum theory. Philosophy of Science, 71(December), 683–695.CrossRefGoogle Scholar
  25. Tanona, S. (2013). Decoherence and the Copenhagen cut. Synthese, 190, 3625–3649.CrossRefGoogle Scholar
  26. Tegmark, M. (2015). Consciousness as a state of matter. Chaos, Solitons & Fractals, 76, 238–270.CrossRefGoogle Scholar
  27. van Fraassen, B. C. (2008). Scientific representation: Paradoxes of perspective. Oxford: Clarendon Press.CrossRefGoogle Scholar
  28. Viola, L., & Barnum, H. (2010). Entanglement and subsystems, entanglement beyond subsystems, and all that. In A. Bokulich & G. Jaeger (Eds.), Philosophy of quantum information and entanglement (pp. 16–43). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  29. Wallace, D. (2008). Philosophy of quantum mechanics. In D. Rickles (Ed.), The ashgate companion to the new philosophy of physics (pp. 16–98). Aldershot: Ashgate.Google Scholar
  30. Wallace, D. (2012). Decoherence and its role in the modern measurement problem. Philosophical Transactions of the Royal Society of London A, 370, 4576–4593.CrossRefGoogle Scholar
  31. Zeh, H. D. (1970). On the interpretation of measurement in quantum theory. Foundations of Physics, 1, 69–76.CrossRefGoogle Scholar
  32. Zurek, W. H. (1981). Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Physical Review D, 24, 1516–1525.CrossRefGoogle Scholar
  33. Zurek, W. H. (1982). Environment-induced superselection rules. Physical Review D, 26, 1862–1880.CrossRefGoogle Scholar
  34. Zurek, W. H. (1998). Decoherence, einselection, and the existential interpretation (the rough guide). Philosophical Transactions of the Royal Society of London A, 356, 1793–1821.CrossRefGoogle Scholar
  35. Zurek, W. H. (2002). Decoherence and the transition from quantum to classical—revisited. Los Alamos Science, 27, 86–109.Google Scholar
  36. Zurek, W. H. (2009). Quantum Darwinism. Nature Physics, 5, 181–188.CrossRefGoogle Scholar
  37. Zurek, W. H., Habib, S., & Paz, J. P. (1993). Coherent states via decoherence. Physical Review Letters, 70, 1187–1190.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.CRYF Group, Ecclesiastical School of PhilosophyUniversity of NavarraPamplonaSpain
  2. 2.Mind-Brain Group, Institute for Culture and Society (ICS)University of NavarraPamplonaSpain

Personalised recommendations